Efficient charge settings for mechanizing the unloading of chamotte brick from tunnel-kiln trucks

Refractories ◽  
1976 ◽  
Vol 17 (3-4) ◽  
pp. 152-157
Author(s):  
V. V. Migunov ◽  
V. A. Ivanov ◽  
V. G. Abbakumov ◽  
A. K. Gerasimenko ◽  
B. E. Stanilov ◽  
...  
2020 ◽  
Vol 8 (40) ◽  
pp. 20963-20969 ◽  
Author(s):  
Wei Chen ◽  
Guo-Bo Huang ◽  
Hao Song ◽  
Jian Zhang

An efficient charge transfer channel for improving the photocatalytic water splitting activity and durability of CdS without sacrificial agents.


Author(s):  
S.P.A.U.K. Samarakoon ◽  
C.A.N. Fernando

A considerable photo-current enhancement was found at the Cu/p-Cu2O/rGO-electrolyte interface in a photo-electrochemical cell with compared to that of Cu/p-Cu2O-electrolyte interface. The reason for the photo-current enhancement may be due to the efficient charge separation process provided at Cu/p-Cu2O/rGO-electrolyte interface. Here rGO (reduced graphene oxide) acts as an electron acceptor for the photo-generated charge carriers as it readily accept electrons from the conduction band of p-Cu2O. rGO was synthesized using electro-phoretic deposition (EPD) technique. Fabricated samples were characterized using diffuse reflectance spectra, photo-current action spectra and the time development of the photocurrent of photo-electrochemical cells.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2231
Author(s):  
Alexandru Enesca ◽  
Luminita Isac

A dual S-scheme Cu2S_TiO2_WO3 heterostructure was constructed by sol–gel method using a two-step procedure. Due to the synthesis parameters and annealing treatment the heterostructure is characterized by sulfur deficit and oxygen excess allowing the passivation of oxygen vacancies. The photocatalytic activity was evaluated under UV and UV–Vis irradiation scenarios using S-MCh as reference pollutant. The heterostructure is composed on orthorhombic Cu2S, anatase TiO2 and monoclinic WO3 with crystallite sizes varying from 65.2 Å for Cu2S to 97.1 Å for WO3. The heterostructure exhibit a dense morphology with pellets and particle-like morphology closely combined in a relatively compact assembly. The surface elemental composition indicate that the heterostructure maintain a similar atomic ratio as established during the synthesis with a slight sulfur deficit due to the annealing treatments. The results indicate that the three-component heterostructure have higher photocatalytic efficiency (61%) comparing with two-component heterostructure or bare components. Moreover, Cu2S_TiO2_WO3 exhibit a superior constant rate (0.114 s−1) due to the high concentration of photogenerated charge carriers, efficient charge separation and migration.


Author(s):  
Yin-Xiang Li ◽  
Wei Liu ◽  
Meng-Na Yu ◽  
Xue-Mei Dong ◽  
Chang-Jin Ou ◽  
...  

Wide-bandgap organic nanocrystals are developed. The strong emission, efficient charge transport and tunable dual-color lasing characters indicate their superior photoelectric integrated property toward potential multifunctional applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

AbstractAll-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.


Author(s):  
Taehyun Kwon ◽  
Heesu Yang ◽  
Minki Jun ◽  
Taekyung Kim ◽  
Jinwhan Joo ◽  
...  

The oxygen evolution reaction (OER) requires a large overpotential which undermines the stability of electrocatalysts, typically IrOx or RuOx. RuOx is particularly vulnerable to high overpotential in acidic media, due...


Sign in / Sign up

Export Citation Format

Share Document