Measurement of thyroid cell surface antibodies by radioassay using human cultured thyroid cells

1981 ◽  
Vol 4 (4) ◽  
pp. 439-444 ◽  
Author(s):  
R. Toccafondi ◽  
C. M. Rotella ◽  
C. Marcocci ◽  
L. Bartalena ◽  
L. Chiovato ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


1978 ◽  
Vol 77 (3) ◽  
pp. 353-NP ◽  
Author(s):  
PAMELA M. POVEY ◽  
B. REES SMITH ◽  
R. HALL

The surface membrane proteins of cultured porcine thyroid cells have been labelled with 125I by the lactoperoxidase method. Evidence that the labelling was restricted to the cell surface was supported by the high viability of the cells in suspension, the high proportion of labelled material in the particulate fraction after homogenization and electronmicroscopic autoradiographic studies. The labelled proteins were analysed by electrophoresis on polyacrylamide gels containing sodium dodecyl sulphate and this indicated the presence of ten major labelled protein bands with approximate molecular weights of 175 000, 155 000, 135 000, 88 000, 80 000, 52 300, 39 000, 30 000, 21 000 and 14 300. Comparison of the electrophoretic patterns obtained with cultured human and porcine thyroid cells suggested that there were species differences in the proportions of lower-molecular-weight proteins.


Diabetes ◽  
1986 ◽  
Vol 35 (11) ◽  
pp. 1262-1267 ◽  
Author(s):  
K. Yamada ◽  
T. Hanafusa ◽  
H. Fujino-Kurihara ◽  
A. Miyazaki ◽  
H. Nakajima ◽  
...  

Endocrine ◽  
2021 ◽  
Author(s):  
Francesca Coperchini ◽  
Gianluca Ricci ◽  
Laura Croce ◽  
Marco Denegri ◽  
Rubina Ruggiero ◽  
...  

Abstract Introduction Angiotensin-converting-enzyme-2 (ACE-2) was demonstrated to be the receptor for cellular entry of SARS-CoV-2. ACE-2 mRNA was identified in several human tissues and recently also in thyroid cells in vitro. Purpose Aim of the present study was to investigate the effect of pro-inflammatory cytokines on the ACE-2 mRNA levels in human thyroid cells in primary cultures. Methods Primary thyroid cell cultures were treated with IFN-γ and TNF-α alone or in combination for 24 h. ACE-2 mRNA levels were measured by RT-PCR. As a control, the levels of IFN-γ inducible chemokine (CXCL10) were measured in the respective cell culture supernatants. Results The mean levels of ACE-2 mRNA increased after treatment with IFN-γ and TNF-α in all the thyroid cell preparations, while the combination treatment did not consistently synergically increase ACE-2-mRNA. At difference, CXCL10 was consistently increased by IFN-γ and synergically further increased by the combination treatment with IFN-γ + TNF-α, with respect to IFN-γ alone. Conclusions The results of the present study show that IFN-γ and, to a lesser extent TNF-α consistently increase ACE-2 mRNA levels in NHT primary cultures. More interestingly, the combined stimulation (proven to be effective according to the synergic effect registered for CXCL10) produces different responses in terms of ACE-2 mRNA modulation. These results would suggest that elevated levels of pro-inflammatory cytokines could facilitate the entering of the virus in cells by further increasing ACE-2 expression and/or account for the different degree of severity of SARS-COV-2 infection. This hypothesis deserves to be confirmed by further specific studies.


1986 ◽  
Vol 75 (9) ◽  
pp. 1250-1255
Author(s):  
Yasuo HARIGAYA ◽  
Yasumasa KUWABARA ◽  
Tokio TAKEUCHI ◽  
Sadao SATOH ◽  
Yasunori KANAZAWA

1960 ◽  
Vol 20 (2) ◽  
pp. 83-NP ◽  
Author(s):  
W. J. IRVINE

SUMMARY Human thyroid cells were grown in tissue culture in media containing normal human serum, Hashimoto serum, and rabbit sera containing antibodies to purified human thyroglobulin and to crude thyroid extract, respectively. The thyroid cells grew equally well in all media, with the exception of the rabbit serum containing antibodies to crude thyroid extract. Intact thyroid cells obtained from tissue culture failed to fix Hashimoto antibodies in the presence of complement, whereas the constituents of disrupted thyroid cells gave a strongly positive complement-fixation test with Hashimoto serum. It is therefore suggested that the intact thyroid cell is impermeable to complement-fixing Hashimoto antibody. The evidence afforded by the present work adds further weight to the belief that Hashimoto's disease may not be due to a simple auto-immunizing process consequent upon the interaction of thyroid antigen and the known circulating auto-antibodies. Evidence in support of an alternative hypothesis involving 'cell-bound' antibodies with disruption of the follicular basement membrane is discussed.


1980 ◽  
Vol 85 (2) ◽  
pp. 245-251 ◽  
Author(s):  
A. BRENNAN ◽  
P. M. POVEY ◽  
B. REES SMITH ◽  
R. HALL

Isolated porcine thyroid cells were surface-labelled with 125I using the lactoperoxidase technique. Samples of the cells were then cultured and harvested at various intervals for up to 7 days. The labelled proteins remaining on the cells or shed into the culture medium were analysed by electrophoresis on polyacrylamide gels run in sodium dodecyl sulphate. These studies indicated that the several different surface proteins of the thyroid cells were lost from the cell surface at similar rates (half-time of approximately 28 h) as the result, at least in part, of a process which depended on active cell metabolism. In addition, the gel profiles obtained from analysis of both medium and membrane-bound labelled proteins were similar and this suggested that peptide cleavage was not involved in the shedding of the majority of these proteins.


1984 ◽  
Vol 74 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Shoji Maruyama ◽  
Masahiko Sugiura ◽  
Michio Nakazawa ◽  
Hiroko Tomiyama ◽  
Miyuki Shizawa ◽  
...  

2005 ◽  
Vol 25 (7) ◽  
pp. 2846-2852 ◽  
Author(s):  
Jens Behrends ◽  
Serge Clément ◽  
Bernard Pajak ◽  
Viviane Pohl ◽  
Carine Maenhaut ◽  
...  

ABSTRACT Rhophilin 2 is a Rho GTPase binding protein initially isolated by differential screening of a chronically thyrotropin (TSH)-stimulated dog thyroid cDNA library. In thyroid cell culture, expression of rhophilin 2 mRNA and protein is enhanced following TSH stimulation of the cyclic AMP (cAMP) transduction cascade. Yeast two-hybrid screening and coimmunoprecipitation have revealed that the GTP-bound form of RhoB and components of the cytoskeleton are protein partners of rhophilin 2. These results led us to suggest that rhophilin 2 could play an important role downstream of RhoB in the control of endocytosis during the thyroid secretory process which follows stimulation of the TSH/cAMP pathway. To validate this hypothesis, we generated rhophilin 2-deficient mice and analyzed their thyroid structure and function. Mice lacking rhophilin 2 develop normally, have normal life spans, and are fertile. They have no visible goiter and no obvious clinical signs of hyper- or hypothyroidism. The morphology of thyroid cells and follicles in these mice were normal, as were the different biological tests performed to investigate thyroid function. Our results indicate that rhophilin 2 does not play an essential role in thyroid physiology.


Author(s):  
M. Rotondi ◽  
F. Coperchini ◽  
G. Ricci ◽  
M. Denegri ◽  
L. Croce ◽  
...  

Abstract Purpose SARS-COV-2 is a pathogenic agent belonging to the coronavirus family, responsible for the current global world pandemic. Angiotensin-converting enzyme 2 (ACE-2) is the receptor for cellular entry of SARS-CoV-2. ACE-2 is a type I transmembrane metallo-carboxypeptidase involved in the Renin-Angiotensin pathway. By analyzing two independent databases, ACE-2 was identified in several human tissues including the thyroid. Although some cases of COVID-19-related subacute thyroiditis were recently described, direct proof for the expression of the ACE-2 mRNA in thyroid cells is still lacking. Aim of the present study was to investigate by RT-PCR whether the mRNA encoding for ACE-2 is present in human thyroid cells. Methods RT-PCR was performed on in vitro ex vivo study on thyroid tissue samples (15 patients undergoing thyroidectomy for benign thyroid nodules) and primary thyroid cell cultures. Results The ACE-2 mRNA was detected in all surgical thyroid tissue samples (n = 15). Compared with two reporter genes (GAPDH: 0.052 ± 0.0026 Cycles−1; β-actin: 0.044 ± 0.0025 Cycles−1; ACE-2: 0.035 ± 0.0024 Cycles−1), the mean level of transcript expression for ACE-2 mRNA was abundant. The expression of ACE-2 mRNA in follicular cells was confirmed by analyzing primary cultures of thyroid cells, which expressed the ACE-2 mRNA at levels similar to tissues. Conclusions The results of the present study demonstrate that the mRNA encoding for the ACE-2 receptor is expressed in thyroid follicular cells, making them a potential target for SARS-COV-2 entry. Future clinical studies in patients with COVID-19 will be required for increase our understanding of the thyroid repercussions of SARS-CoV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document