scholarly journals Electroweak skyrmions in the HEFT

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Juan Carlos Criado ◽  
Valentin V. Khoze ◽  
Michael Spannowsky

Abstract We study the existence of skyrmions in the presence of all the electroweak degrees of freedom, including a dynamical Higgs boson, with the electroweak symmetry being non-linearly realized in the scalar sector. For this, we use the formulation of the Higgs Effective Field Theory (HEFT). In contrast with the linear realization, a well-defined winding number exists in HEFT for all scalar field configurations. We classify the effective operators that can potentially stabilize the skyrmions and numerically find the region in parameter spaces that support them. We do so by minimizing the static energy functional using neural networks. This method allows us to obtain the minimal-energy path connecting the vacuum to the skyrmion configuration and calculate its mass and radius. Since skyrmions are not expected to be produced at colliders, we explore the experimental and theoretical bounds on the operators that generate them. Finally, we briefly consider the possibility of skyrmions being dark matter candidates.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Anne Mareike Galda ◽  
Matthias Neubert ◽  
Sophie Renner

Abstract The Standard Model Effective Field Theory (SMEFT) offers a powerful theoretical framework for parameterizing the low-energy effects of heavy new particles with masses far above the scale of electroweak symmetry breaking. Additional light degrees of freedom extend the effective theory. We show that light new particles that are weakly coupled to the SM via non-renormalizable interactions induce non-zero Wilson coefficients in the SMEFT Lagrangian via renormalization-group evolution. For the well-motivated example of axions and axion-like particles (ALPs) interacting with the SM via classically shift-invariant dimension-5 interactions, we calculate how these interactions contribute to the one-loop renormalization of the dimension-6 SMEFT operators, and how this running sources additional contributions to the Wilson coefficients on top of those expected from heavy new states. As an application, we study the ALP contributions to the magnetic dipole moment of the top quark and comment on implications of electroweak precision constraints on ALP couplings.


2005 ◽  
Vol 20 (06) ◽  
pp. 1295-1302 ◽  
Author(s):  
OTTO C. W. KONG

We discuss extensions of the Standard Model through extending the electroweak gauge symmetry. An extended electroweak symmetry requires a list of extra fermionic and scalar states. The former is necessary to maintain cancellation of gauge anomalies, and largely fixed by the symmetry embedding itself. The latter is usually considered quite arbitrary, so long as a vacuum structure admitting the symmetry breaking is allowed. Anomaly cancellation may be used to link the three families of quarks and leptons together, given a perspective on flavor physics. It is illustrated lately that the kind of models may also have the so-called little Higgs mechanism incorporated. This more or less fixes the scalar sector and take care of the hierarchy problem, making such models of extended electroweak symmetries quite appealing candidates as TeV scale effective field theories.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Svjetlana Fajfer ◽  
Jernej F. Kamenik ◽  
M. Tammaro

Abstract We explore the interplay of New Physics (NP) effects in (g− 2)ℓ and h→ℓ+ℓ− within the Standard Model Effective Field Theory (SMEFT) framework, including one-loop Renormalization Group (RG) evolution of the Wilson coefficients as well as matching to the observables below the electroweak symmetry breaking scale. We include both the leading dimension six chirality flipping operators including a Higgs and SU(2)L gauge bosons as well as four-fermion scalar and tensor operators, forming a closed operator set under the SMEFT RG equations. We compare present and future experimental sensitivity to different representative benchmark scenarios. We also consider two simple UV completions, a Two Higgs Doublet Model and a single scalar LeptoQuark extension of the SM, and show how tree level matching to SMEFT followed by the one-loop RG evolution down to the electroweak scale can reproduce with high accuracy the (g−2)ℓ and h→ℓ+ℓ− contributions obtained by the complete one- and even two-loop calculations in the full models.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 253
Author(s):  
David R. Junior ◽  
Luis E. Oxman ◽  
Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.


2015 ◽  
Vol 22 (74) ◽  
pp. 385-404
Author(s):  
Sérgio Fernando Loureiro Rezende ◽  
Ricardo Salera ◽  
José Márcio de Castro

This article aims to confront four theories of firm growth – Optimum Firm Size, Stage Theory of Growth, The Theory of the Growth of the Firm and Dynamic Capabilities – with empirical data derived from a backward-looking longitudinal qualitative case of the growth trajectory of a Brazilian capital goods firm. To do so, we employed Degree of Freedom-Analysis for data analysis. This technique aims to test the empirical strengths of competing theories using statistical tests, in particular Chi-square test. Our results suggest that none of the four theories fully explained the growth of the firm we chose as empirical case. Nevertheless, Dynamic Capabilities was regarded as providing a more satisfactory explanatory power.


2021 ◽  
Author(s):  
Bérengère Dubrulle ◽  
François Daviaud ◽  
Davide Faranda ◽  
Louis Marié ◽  
Brice Saint-Michel

Abstract. According to everyone’s experience, predicting the weather reliably over more than 8 days seems an impossible taskfor our best weather agencies. At the same time, politicians and citizens are asking scientists for climate projections severaldecades into the future to guide economic and environmental policies, especially regarding the maximum admissible emissions of CO2. To what extent is this request scientifically admissible? In this lecture we will investigate this question, focusing on the topic of predictions of transitions between metastable statesof the atmospheric or oceanic circulations. Two relevant exemples are the switching between zonal and blocked atmosphericcirculation at midlatitudes and the alternance of El Niño and La Niña phases in the Pacific ocean. The main issue is whetherpresent climate models, that necessarily have a finite resolution and a smaller number of degrees of freedom than the actualterrestrial system, are able to reproduce such spontaneous or forced transitions. To do so, we will draw an analogy betweenclimate observations and results obtained in our group on a laboratory-scale, turbulent, von Kármán flow, in which spontaneoustransitions between different states of the circulation take place. We will detail the analogy, and investigate the nature of thetransitions, the number of degrees of freedom that characterizes the latter and discuss the effect of reducing the number ofdegrees of freedom in such systems. We will also discuss the role of fluctuations and their origin, and stress the importance ofdescribing very small scales to capture fluctuations of correct intensity and scale.


2007 ◽  
Vol 22 (31) ◽  
pp. 5670-5684 ◽  
Author(s):  
Yuta Kodama ◽  
Kento Kokubu ◽  
Nobuyuki Sawado ◽  
Noriko Shiiki

We construct two distinct brane solutions in six dimensional effective field theory models. The CP 1 sigma model and the baby skyrmion realize warped compactification of the extra dimensions for negative bulk cosmological constant. Higher winding number solutions of the baby skyrmion are also presented.


2019 ◽  
Vol 34 (28) ◽  
pp. 1950164 ◽  
Author(s):  
Maxim Emelin ◽  
Radu Tatar

We study the interplay among extrema of axion potentials, Kahler moduli stabilization and the swampland criteria. We argue that moving away from the minima of nonperturbatively generated axion potentials can lead to a runaway behavior of moduli that govern the couplings in the effective field theory. The proper inclusion of these degrees of freedom resolves the conflict between periodic axion potentials and the gradient de Sitter criterion, without the need to invoke the refined de Sitter criterion. We investigate the possibility of including this runaway direction as a model of quintessence that satisfies the swampland criteria. Using a single nonperturbative effect, the maximum along the axion direction provides such a runaway direction, which is unstable in the axion directions, sensitive to initial conditions and too steep to allow for a Hubble time of expansion without violating the field excursion criterion. Adding a second nonperturbative effect generates a saddle point in the potential satisfying the refined de Sitter criterion, which solves the steepness problem and improves the initial conditions problem although some fine-tuning remains required.


Particles ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 245-271 ◽  
Author(s):  
Andrey Grozin

This paper represents a pedagogical introduction to low-energy effective field theories. In some of them, heavy particles are “integrated out” (a typical example—the Heisenberg–Euler EFT); in some, heavy particles remain but some of their degrees of freedom are “integrated out” (Bloch–Nordsieck EFT). A large part of these lectures is, technically, in the framework of QED. QCD examples, namely decoupling of heavy flavors and HQET, are discussed only briefly. However, effective field theories of QCD are very similar to the QED case, and there are just some small technical complications: more diagrams, color factors, etc. The method of regions provides an alternative view at low-energy effective theories; this is also briefly introduced.


Sign in / Sign up

Export Citation Format

Share Document