scholarly journals Mechanisms of secretion and spreading of pathological tau protein

2019 ◽  
Vol 77 (9) ◽  
pp. 1721-1744 ◽  
Author(s):  
Cecilia A. Brunello ◽  
Maria Merezhko ◽  
Riikka-Liisa Uronen ◽  
Henri J. Huttunen

Abstract Accumulation of misfolded and aggregated forms of tau protein in the brain is a neuropathological hallmark of tauopathies, such as Alzheimer’s disease and frontotemporal lobar degeneration. Tau aggregates have the ability to transfer from one cell to another and to induce templated misfolding and aggregation of healthy tau molecules in previously healthy cells, thereby propagating tau pathology across different brain areas in a prion-like manner. The molecular mechanisms involved in cell-to-cell transfer of tau aggregates are diverse, not mutually exclusive and only partially understood. Intracellular accumulation of misfolded tau induces several mechanisms that aim to reduce the cellular burden of aggregated proteins and also promote secretion of tau aggregates. However, tau may also be released from cells physiologically unrelated to protein aggregation. Tau secretion involves multiple vesicular and non-vesicle-mediated pathways, including secretion directly through the plasma membrane. Consequently, extracellular tau can be found in various forms, both as a free protein and in vesicles, such as exosomes and ectosomes. Once in the extracellular space, tau aggregates can be internalized by neighboring cells, both neurons and glial cells, via endocytic, pinocytic and phagocytic mechanisms. Importantly, accumulating evidence suggests that prion-like propagation of misfolding protein pathology could provide a general mechanism for disease progression in tauopathies and other related neurodegenerative diseases. Here, we review the recent literature on cellular mechanisms involved in cell-to-cell transfer of tau, with a particular focus in tau secretion.

2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Kento Otani ◽  
Takashi Shichita

AbstractTherapeutic strategies for regulating neuroinflammation are expected in the development of novel therapeutic agents to prevent the progression of central nervous system (CNS) pathologies. An understanding of the detailed molecular and cellular mechanisms of neuroinflammation in each CNS disease is necessary for the development of therapeutics. Since the brain is a sterile organ, neuroinflammation in Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) is triggered by cerebral cellular damage or the abnormal accumulation of inflammatogenic molecules in CNS tissue through the activation of innate and acquired immunity. Inflammation and CNS pathologies worsen each other through various cellular and molecular mechanisms, such as oxidative stress or the accumulation of inflammatogenic molecules induced in the damaged CNS tissue. In this review, we summarize the recent evidence regarding sterile immune responses in neurodegenerative diseases.


2020 ◽  
Vol 10 (11) ◽  
pp. 858
Author(s):  
Antonio Dominguez-Meijide ◽  
Eftychia Vasili ◽  
Tiago Fleming Outeiro

Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.


2019 ◽  
Vol 5 (6) ◽  
pp. eaaw6404 ◽  
Author(s):  
Susanne Wegmann ◽  
Rachel E. Bennett ◽  
Louis Delorme ◽  
Ashley B. Robbins ◽  
Miwei Hu ◽  
...  

The incidence of Alzheimer’s disease (AD), which is characterized by progressive cognitive decline that correlates with the spread of tau protein aggregation in the cortical mantle, is strongly age-related. It could be that age predisposes the brain for tau misfolding and supports the propagation of tau pathology. We tested this hypothesis using an experimental setup that allowed for exploration of age-related factors of tau spread and regional vulnerability. We virally expressed human tau locally in entorhinal cortex (EC) neurons of young or old mice and monitored the cell-to-cell tau protein spread by immunolabeling. Old animals showed more tau spreading in the hippocampus and adjacent cortical areas and accumulated more misfolded tau in EC neurons. No misfolding, at any age, was observed in the striatum, a brain region mostly unaffected by tangles. Age and brain region dependent tau spreading and misfolding likely contribute to the profound age-related risk for sporadic AD.


2020 ◽  
Author(s):  
Erica Barini ◽  
Gudrun Plotzky ◽  
Yulia Mordashova ◽  
Jonas Hoppe ◽  
Esther Rodriguez-Correa ◽  
...  

SUMMARYIn Alzheimer disease, Tau pathology is thought to propagate from cell to cell throughout interconnected brain areas. However, the forms of Tau released into the brain interstitial fluid (ISF) in vivo during the development of Tauopathy and their pathological relevance remain unclear. Combining in vivo microdialysis and biochemical analysis, we find that human Tau (hTau) present in brain ISF is truncated and comprises at least 10 distinct fragments spanning the entire Tau protein. The fragmentation pattern is similar across different Tau transgenic models, pathological stages and brain areas. ISF hTau concentration decreases during Tauopathy progression, while its phosphorylation increases. ISF from mice with established Tauopathy induces Tau aggregation in HEK293-Tau biosensor cells and notably, only a small fraction of Tau, separated by ultracentrifugation, is seeding competent. These results indicate that only a subset of Tau accounts for ISF seeding competence and have the potential to contribute to the propagation of Tau pathology.Graphical abstractHighlights✓In transgenic mice, interstitial fluid comprises several Tau fragments spanning the entire Tau sequence.✓Interstitial fluid Tau concentration decreases with Tauopathy progression, while phosphorylation increases.✓Only interstitial fluid from mice with established Tauopathy is seeding competent in vitro.✓Interstitial fluid seeding competence is driven by less soluble, aggregated and phosphorylated Tau species.In BriefBarini et al. show that in the brain interstitial fluid of Tau transgenic mice, truncated Tau decreases, while its phosphorylation increases during the progression of pathology. A subset of less soluble, aggregated and phosphorylated ISF Tau induces Tau aggregation in cells.


2010 ◽  
Vol 2010 ◽  
pp. 1-11
Author(s):  
Thorsten Koechling ◽  
Filip Lim ◽  
Felix Hernandez ◽  
Jesus Avila

Alzheimer's disease (AD) is the most frequent neurodegenerative disorder leading to dementia in the aged human population. It is characterized by the presence of two main pathological hallmarks in the brain: senile plaques containing -amyloid peptide and neurofibrillary tangles (NFTs), consisting of fibrillar polymers of abnormally phosphorylated tau protein. Both of these histological characteristics of the disease have been simulated in genetically modified animals, which today include numerous mouse, fish, worm, and fly models of AD. The objective of this review is to present some of the main animal models that exist for reproducing symptoms of the disorder and their advantages and shortcomings as suitable models of the pathological processes. Moreover, we will discuss the results and conclusions which have been drawn from the use of these models so far and their contribution to the development of therapeutic applications for AD.


2021 ◽  
Author(s):  
Tony Zhang ◽  
Matthew Rosenberg ◽  
Pietro Perona ◽  
Markus Meister

An animal entering a new environment typically faces three challenges: explore the space for resources, memorize their locations, and navigate towards those targets as needed. Experimental work on exploration, mapping, and navigation has mostly focused on simple environments - such as an open arena, a pond [1], or a desert [2] - and much has been learned about neural signals in diverse brain areas under these conditions [3,4]. However, many natural environments are highly constrained, such as a system of burrows, or of paths through the underbrush. More generally, many cognitive tasks are equally constrained, allowing only a small set of actions at any given stage in the process. Here we propose an algorithm that learns the structure of an arbitrary environment, discovers useful targets during exploration, and navigates back to those targets by the shortest path. It makes use of a behavioral module common to all motile animals, namely the ability to follow an odor to its source [5]. We show how the brain can learn to generate internal "virtual odors'" that guide the animal to any location of interest. This endotaxis algorithm can be implemented with a simple 3-layer neural circuit using only biologically realistic structures and learning rules. Several neural components of this scheme are found in brains from insects to humans. Nature may have evolved a general mechanism for search and navigation on the ancient backbone of chemotaxis.


2014 ◽  
Vol 369 (1633) ◽  
pp. 20130150 ◽  
Author(s):  
Mio Nonaka ◽  
Hajime Fujii ◽  
Ryang Kim ◽  
Takashi Kawashima ◽  
Hiroyuki Okuno ◽  
...  

During learning and memory, it has been suggested that the coordinated electrical activity of hippocampal neurons translates information about the external environment into internal neuronal representations, which then are stored initially within the hippocampus and subsequently into other areas of the brain. A widely held hypothesis posits that synaptic plasticity is a key feature that critically modulates the triggering and the maintenance of such representations, some of which are thought to persist over time as traces or tags. However, the molecular and cell biological basis for these traces and tags has remained elusive. Here, we review recent findings that help clarify some of the molecular and cellular mechanisms critical for these events, by untangling a two-way signalling crosstalk route between the synapses and the neuronal soma. In particular, a detailed interrogation of the soma-to-synapse delivery of immediate early gene product Arc/Arg3.1, whose induction is triggered by heightened synaptic activity in many brain areas, teases apart an unsuspected ‘inverse’ synaptic tagging mechanism that likely contributes to maintaining the contrast of synaptic weight between strengthened and weak synapses within an active ensemble.


2021 ◽  
Author(s):  
Nikoloz Sirmpilatze ◽  
Judith Mylius ◽  
Michael Ortiz-Rios ◽  
Jürgen Baudewig ◽  
Jaakko Paasonen ◽  
...  

During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats. At first, we determined the fMRI signatures of burst-suppression in human EEG-fMRI data. Applying this method to animal fMRI datasets, we found distinct burst-suppression signatures in all species. The burst-suppression maps revealed a marked inter-species difference: in rats the entire neocortex engaged in burst-suppression, while in primates most sensory areas were excluded—predominantly the primary visual cortex. We anticipate that the identified species-specific fMRI signatures and whole-brain maps will guide future targeted studies investigating the cellular and molecular mechanisms of burst-suppression in unconscious states.


2021 ◽  
Vol 12 ◽  
Author(s):  
Antonio Valencia ◽  
Veronica L. Reinhart Bieber ◽  
Bekim Bajrami ◽  
Galina Marsh ◽  
Stefan Hamann ◽  
...  

Acetylation of tau protein is dysregulated in Alzheimer's Disease (AD). It has been proposed that acetylation of specific sites in the KXGS motif of tau can regulate phosphorylation of nearby residues and reduce the propensity of tau to aggregate. Histone deacetylase 6 (HDAC6) is a cytoplasmic enzyme involved in deacetylation of multiple targets, including tau, and it has been suggested that inhibition of HDAC6 would increase tau acetylation at the KXGS motifs and thus may present a viable therapeutic approach to treat AD. To directly test the contribution of HDAC6 to tau pathology, we intracerebroventricularly injected an antisense oligonucleotide (ASO) directed against HDAC6 mRNA into brains of P301S tau mice (PS19 model), which resulted in a 70% knockdown of HDAC6 protein in the brain. Despite a robust decrease in levels of HDAC6, no increase in tau acetylation was observed. Additionally, no change of tau phosphorylation or tau aggregation was detected upon the knockdown of HDAC6. We conclude that HDAC6 does not impact tau pathology in PS19 mice.


Sign in / Sign up

Export Citation Format

Share Document