scholarly journals Radiomics in radiation oncology—basics, methods, and limitations

2020 ◽  
Vol 196 (10) ◽  
pp. 848-855
Author(s):  
Philipp Lohmann ◽  
Khaled Bousabarah ◽  
Mauritius Hoevels ◽  
Harald Treuer

Abstract Over the past years, the quantity and complexity of imaging data available for the clinical management of patients with solid tumors has increased substantially. Without the support of methods from the field of artificial intelligence (AI) and machine learning, a complete evaluation of the available image information is hardly feasible in clinical routine. Especially in radiotherapy planning, manual detection and segmentation of lesions is laborious, time consuming, and shows significant variability among observers. Here, AI already offers techniques to support radiation oncologists, whereby ultimately, the productivity and the quality are increased, potentially leading to an improved patient outcome. Besides detection and segmentation of lesions, AI allows the extraction of a vast number of quantitative imaging features from structural or functional imaging data that are typically not accessible by means of human perception. These features can be used alone or in combination with other clinical parameters to generate mathematical models that allow, for example, prediction of the response to radiotherapy. Within the large field of AI, radiomics is the subdiscipline that deals with the extraction of quantitative image features as well as the generation of predictive or prognostic mathematical models. This review gives an overview of the basics, methods, and limitations of radiomics, with a focus on patients with brain tumors treated by radiation therapy.

2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 253-253
Author(s):  
Ahmed M. Khalaf ◽  
David T. Fuentes ◽  
Kareem Ahmed ◽  
Reham Abdel-Wahab ◽  
Manal Hassan ◽  
...  

253 Background: To determine whether CT imaging features can provide quantitative biomarkers to differentiate HCC with pathologic B-catenin gene mutation and those without mutation. Methods: Quantitative imaging features were extracted from a database of manually labeled liver with enhancing and non-enhancing tumor tissue,which were established using multiphasic CT images from 17 patients. CT studies were done before each patient underwent surgical removal of the HCC, which were subjected to pathologic analysis to evaluate B-catenin mutation.The mean period between the CT studies and the pathologic analyses was 18 days. According to the pathology results, the patients were divided into two groups: HCC with CTNNB1 mutation and HCC without. Image feature extraction included image gradients, co-occurrence matrix, and pixel neighborhood statistics of the first, second, and third moments. Pairwise analyses of the imaging features were performed on the mutated and non-mutated HCC images and the background liver tissue of both groups. Independent samples t-test and Mann Whitney U test were performed to quantitatively compare between the means of the imaging features extracted from the tumor tissues of both groups and those extracted from the background liver tissue of both groups. Results: Imaging feature analysis of the pairwise difference between the mutated and non-mutated HCC scans for multiple pixel-neighborhood image features are statistically significant.The top stratifying image features include the skewness (p = 0.02), energy (p = .03), and entropy (p = .03) during the venous and arterial phase. Conclusions: This preliminary study demonstrates the feasibility of quantitative imaging feature extraction from CE-CT imaging to differentiate between HCC with proven B-catenin gene mutation and those without mutation. Non-invasive methods of identifying HCC with B-catenin mutations may be clinically beneficial since B-catenin is an important potential target in novel cancer therapies, and identifying B-catenin mutations may also help provide information regarding prognosis.Verifying the quantitative features in larger patient populations is needed to confirm the results of this study.


2020 ◽  
Author(s):  
Jian Jia ◽  
Lingwei Meng ◽  
Guidong Song ◽  
Shibin Sun ◽  
Chuzhong Li ◽  
...  

Abstract Background: For individually predicting preoperative response to Stereotactic radiotherapy for Nonfunctioning pituitary Adenoma with the use of a radiomics approach.Methods: 93 cases (training set: n = 62; test set: n = 31) were recruited with contrast-enhanced T1-weighted MRI (CE-T1) before stereotactic radiotherapy. All of these patients received another MRI scan to assess sensitivity of radiotherapy after 12 to 18 months. The shrinkage and no increase in tumor volume are regarded as sensitive to gamma knife radiotherapy. According to CE-T1 images, we extracted 1208 quantitative imaging features totally. Support vector machine (SVM) combined with recursive feature elimination (RFE) and grid-search trained a four-feature prediction mode verified with an assay of receiver operating characteristics (ROC) for an individual set of test. In addition, a ROC curves with individual feature and signature bar were constructed for prediction.Results: The cross-validation area under the curve (AUC) on the three-fold train set is 0.991,0.843 and 0.889. In terms of the test and training sets, T1-CE image features led to 0.897 and 0.914 AUC, separately. Conclusions: With the use of a radiomics method, the response to Stereotactic Radiotherapy for Nonfunctioning Pituitary Adenoma was primarily predicted before the operation. The built mode performed well, suggesting that radiomics is promising to preoperatively predict sensitivity to radiotherapy in NFPA.


Author(s):  
Laure Fournier ◽  
Lena Costaridou ◽  
Luc Bidaut ◽  
Nicolas Michoux ◽  
Frederic E. Lecouvet ◽  
...  

Abstract Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. Key Points • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.


Author(s):  
Yinhao Pan ◽  
Ningbo Chen ◽  
Liangjian Liu ◽  
Chengbo Liu ◽  
Zhiqiang Xu ◽  
...  

AbstractPhotoacoustic microscopy is an in vivo imaging technology based on the photoacoustic effect. It is widely used in various biomedical studies because it can provide high-resolution images while being label-free, safe, and harmless to biological tissue. Polygon-scanning is an effective scanning method in photoacoustic microscopy that can realize fast imaging of biological tissue with a large field of view. However, in polygon-scanning, fluctuations of the rotating motor speed and the geometric error of the rotating mirror cause image distortions, which seriously affect the photoacoustic-microscopy imaging quality. To improve the image quality of photoacoustic microscopy using polygon-scanning, an image correction method is proposed based on accurate ultrasound positioning. In this method, the photoacoustic and ultrasound imaging data of the sample are simultaneously obtained, and the angle information of each mirror used in the polygon-scanning is extracted from the ultrasonic data to correct the photoacoustic images. Experimental results show that the proposed method can significantly reduce image distortions in photoacoustic microscopy, with the image dislocation offset decreasing from 24.774 to 10.365 μm.


2021 ◽  
pp. 109818
Author(s):  
Hanna Muenzfeld ◽  
Claus Nowak ◽  
Stefanie Riedlberger ◽  
Alexander Hartenstein ◽  
Bernd Hamm ◽  
...  

2019 ◽  
Vol 1 (1) ◽  
pp. 134-146
Author(s):  
Bálint L. Bálint

Abstract In his article “Embracing Noise and Error”, Bálint L. Bálint argues that human society is going through a profound change as mathematical models are used to predict human behavior both on a personal level and on the level of the entire society. An inherent component of mathematical models is the concept of error or noise, which describes the level of unpredictability of a system by the specific mathematical model. The author reveals the educational origin of the abstract world that can be described by pure mathematics and can be considered an ideal world without errors. While the human perception of the world is different from the abstractions we were taught, the mathematical models need to integrate the error factor to deal with the unpredictability of reality. While scientific thinking developed the statistic-probabilistic model to define the limits of predictability, here we present that in a flow of time driven by entropy, stochastic variability is an in-built characteristic of the material world and represents ultimately the singularity of each individual moment in time and the chance for our freedom of choice.


2019 ◽  
Author(s):  
Ross TA Pedersen ◽  
Julian E Hassinger ◽  
Paul Marchando ◽  
David G Drubin

AbstractDuring clathrin-mediated endocytosis (CME), over 50 different proteins assemble on the plasma membrane to reshape it into a cargo-laden vesicle. It has long been assumed that cargo triggers local CME site assembly in Saccharomyces cerevisiae based on the discovery that cortical actin patches clustered near exocytic sites are CME sites. Quantitative imaging data reported here lead to a radically different view of which CME steps are regulated and which steps are deterministic. We quantitatively and spatially describe progression through the CME pathway and pinpoint a cargo-sensitive regulatory transition point that governs progression from the initiation phase of CME to the internalization phase. Thus, site maturation, rather than site initiation, accounts for the previously observed polarized distribution of actin patches in this organism. While previous studies suggested that cargo ensures its own internalization by regulating either CME initiation rates or frequency of abortive events, our data instead identify maturation through a checkpoint in the pathway as the cargo-sensitive step.SummaryPedersen, Hassinger, et al. investigate steps of the clathrin-mediated endocytosis pathway that are subject to regulation. They report position-dependent differences in endocytic site maturation rates in polarized cells and suggest that cargo controls endocytic internalization through tuning site maturation rather than site initiation.


Panorama development is the basically method of integrating multiple images captured of the same scene under consideration to get high resolution image. This process is useful for combining multiple images which are overlapped to obtain larger image. Usefulness of Image stitching is found in the field related to medical imaging, data from satellites, computer vision and automatic target recognition in military applications. The goal objective of this research paper is basically for developing an high improved resolution and its quality panorama having with high accuracy and minimum computation time. Initially we compared different image feature detectors and tested SIFT, SURF, ORB to find out the rate of detection of the corrected available key points along with processing time. Later on, testing is done with some common techniques of image blending or fusion for improving the mosaicing quality process. In this experimental results, it has been found out that ORB image feature detection and description algorithm is more accurate, fastest which gives a higher performance and Pyramid blending method gives the better stitching quality. Lastly panorama is developed based on combination of ORB binary descriptor method for finding out image features and pyramid blending method.


Sign in / Sign up

Export Citation Format

Share Document