scholarly journals Genomic analysis for heat and combined heat–drought resilience in bread wheat under field conditions

Author(s):  
Michael O. Itam ◽  
Ryosuke Mega ◽  
Yasir S. A. Gorafi ◽  
Yuji Yamasaki ◽  
Izzat S. A. Tahir ◽  
...  

Abstract Key message GWAS on a bread wheat panel with high D genome diversity identified novel alleles and QTLs associated with resilience to combined heat and drought stress under natural field conditions. Abstract As heat (H) and drought stresses occur concurrently under field conditions, studying them separately offers limited opportunities for wheat improvement. Here, a wheat diversity panel containing Aegilops tauschii introgressions was evaluated under H and combined heat–drought (HD) stresses to identify quantitative trait loci (QTLs) associated with resilience to the stresses, and to assess the practicability of harnessing Ae. tauschii diversity for breeding for combined stress resilience. Using genome-wide analysis, we identified alleles and QTLs on chromosomes 3D, 5D, and 7A controlling grain yield (GY), kernel number per spike, and thousand-kernel weight, and on 3D (521–549 Mbp) controlling GY alone. A strong marker–trait association (MTA) for GY stability on chromosome 3D (508.3 Mbp) explained 20.3% of the variation. Leaf traits—canopy temperature, vegetation index, and carbon isotope composition—were controlled by five QTLs on 2D (23–96, 511–554, and 606–614 Mbp), 3D (155–171 Mbp), and 5D (407–413 Mbp); some of them were pleiotropic for GY and yield-related traits. Further analysis revealed candidate genes, including GA20ox, regulating GY stability, and CaaX prenyl protease 2, regulating canopy temperature at the flowering stage, under H and HD stresses. As genome-wide association studies under HD in field conditions are scarce, our results provide genomic landmarks for wheat breeding to improve adaptation to H and HD conditions under climate change.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yousef Rahimi ◽  
Mohammad Reza Bihamta ◽  
Alireza Taleei ◽  
Hadi Alipour ◽  
Pär K. Ingvarsson

Abstract Background Identification of loci for agronomic traits and characterization of their genetic architecture are crucial in marker-assisted selection (MAS). Genome-wide association studies (GWAS) have increasingly been used as potent tools in identifying marker-trait associations (MTAs). The introduction of new adaptive alleles in the diverse genetic backgrounds may help to improve grain yield of old or newly developed varieties of wheat to balance supply and demand throughout the world. Landraces collected from different climate zones can be an invaluable resource for such adaptive alleles. Results GWAS was performed using a collection of 298 Iranian bread wheat varieties and landraces to explore the genetic basis of agronomic traits during 2016–2018 cropping seasons under normal (well-watered) and stressed (rain-fed) conditions. A high-quality genotyping by sequencing (GBS) dataset was obtained using either all original single nucleotide polymorphism (SNP, 10938 SNPs) or with additional imputation (46,862 SNPs) based on W7984 reference genome. The results confirm that the B genome carries the highest number of significant marker pairs in both varieties (49,880, 27.37%) and landraces (55,086, 28.99%). The strongest linkage disequilibrium (LD) between pairs of markers was observed on chromosome 2D (0.296). LD decay was lower in the D genome, compared to the A and B genomes. Association mapping under two tested environments yielded a total of 313 and 394 significant (−log10P >3) MTAs for the original and imputed SNP data sets, respectively. Gene ontology results showed that 27 and 27.5% of MTAs of SNPs in the original set were located in protein-coding regions for well-watered and rain-fed conditions, respectively. While, for the imputed data set 22.6 and 16.6% of MTAs represented in protein-coding genes for the well-watered and rain-fed conditions, respectively. Conclusions Our finding suggests that Iranian bread wheat landraces harbor valuable alleles that are adaptive under drought stress conditions. MTAs located within coding genes can be utilized in genome-based breeding of new wheat varieties. Although imputation of missing data increased the number of MTAs, the fraction of these MTAs located in coding genes were decreased across the different sub-genomes.


2019 ◽  
Author(s):  
Abdulwahab Saliu Shaibu ◽  
Clay Sneller ◽  
Babu N. Motagi ◽  
Jackline Chepkoech ◽  
Mercy Chepngetich ◽  
...  

Abstract Background In order to integrate genomics in breeding and development of drought tolerant groundnut genotypes, identification of genomic regions/genetic markers for drought surrogate traits is essential. We used SNP markers for a genetic analysis of the ICRISAT groundnut minicore collection for genome wide marker-trait association for some physiological traits and to determine the magnitude of linkage disequilibrium (LD) present in the genetic resources. Results The LD analysis showed that about 36% of loci pairs were in significant LD (P < 0.05 and r2 > 0.2) and 3.14% of the pairs were in complete LD. There was rapid decline in LD with distance and the LD was <0.2 at a distance of 41635 bp. The marker trait association (MTAs) studies revealed 20 significant MTAs (p <0.001) with 11 markers for leaf area index (4), canopy temperature (13), chlorophyll content (1) and NDVI (2). The markers explained 2 to 21% of the phenotypic variation observed. Most of the MTAs identified on the A subgenome were also identified on the respective homeologous chromosome on the B subgenome. The duplications of effect observed could be due to common ancestor of the A and B genome which explains the linkage detected between markers lying on different chromosomes seen in the current study. Conclusions The present study identified a total of 20 highly significant marker trait associations with 11 markers for four physiological traits of importance in groundnut; LAI, CT, SCMR and NDVI. The markers identified in this study can serve as useful genomic resources to initiate marker-assisted selection and trait introgression of groundnut for drought tolerance. The identified markers in this study may be useful for marker assisted selection after further validation.


2019 ◽  
Author(s):  
Katie O'Connor ◽  
Ben Hayes ◽  
Craig Hardner ◽  
Catherine Nock ◽  
Abdul Baten ◽  
...  

Abstract Background: Breeding for new macadamia cultivars with high nut yield is expensive in terms of time, labour and cost. Most trees set nuts after four to five years, and candidate varieties for breeding are evaluated for at least eight years for various traits. Genome-wide association studies (GWAS) are promising methods to reduce evaluation and selection cycles by identifying genetic markers linked with key traits, potentially enabling early selection through marker-assisted selection. This study used 295 progeny from 32 full-sib families and 29 parents (18 phenotyped) which were planted across four sites, with each tree genotyped for 4,113 SNPs. ASReml-R was used to perform association analyses with linear mixed models including a genomic relationship matrix to account for population structure. Traits investigated were: nut weight (NW), kernel weight (KW), kernel recovery (KR), percentage of whole kernels (WK), tree trunk circumference (TC), percentage of racemes that survived from flowering through to nut set, and number of nuts per raceme. Results: Seven SNPs were significantly associated with NW (at a genome-wide false discovery rate of <0.05), and four with WK. Multiple regression, as well as mapping of markers to genome assembly scaffolds suggested that some SNPs were detecting the same QTL. There were 44 significant SNPs identified for TC although multiple regression suggested detection of 16 separate QTLs. Conclusions: These findings have important implications for macadamia breeding, and highlight the difficulties of heterozygous populations with rapid LD decay. By coupling validated marker-trait associations detected through GWAS with MAS, genetic gain could be increased by reducing the selection time for economically important nut characteristics. Genomic selection may be a more appropriate method to predict complex traits like tree size and yield.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Preman R. Soumya ◽  
Amanda J. Burridge ◽  
Nisha Singh ◽  
Ritu Batra ◽  
Renu Pandey ◽  
...  

AbstractSoil bioavailability of phosphorus (P) is a major concern for crop productivity worldwide. As phosphatic fertilizers are a non-renewable resource associated with economic and environmental issues so, the sustainable option is to develop P use efficient crop varieties. We phenotyped 82 diverse wheat (Triticum aestivum L.) accessions in soil and hydroponics at low and sufficient P. To identify the genic regions for P efficiency traits, the accessions were genotyped using the 35 K-SNP array and genome-wide association study (GWAS) was performed. The high-quality SNPs across the genomes were evenly distributed with polymorphic information content values varying between 0.090 and 0.375. Structure analysis revealed three subpopulations (C1, C2, C3) and the phenotypic responses of these subpopulations were assessed for P efficiency traits. The C2 subpopulation showed the highest genetic variance and heritability values for numerous agronomically important traits as well as strong correlation under both P levels in soil and hydroponics. GWAS revealed 78 marker-trait associations (MTAs) but only 35 MTAs passed Bonferroni Correction. A total of 297 candidate genes were identified for these MTAs and their annotation suggested their involvement in several biological process. Out of 35, nine (9) MTAs were controlling polygenic trait (two controlling four traits, one controlling three traits and six controlling two traits). These multi-trait MTAs (each controlling two or more than two correlated traits) could be utilized for improving bread wheat to tolerate low P stress through marker-assisted selection (MAS).


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Mazin Mahjoob Mohamed Mahjoob ◽  
Yasir Serag Alnor Gorafi ◽  
Nasrein Mohamed Kamal ◽  
Yuji Yamasaki ◽  
Izzat Sidahmed Ali Tahir ◽  
...  

Aegilops tauschii, the D-genome donor of bread wheat, is a storehouse of genetic diversity that can be used for wheat improvement. This species consists of two main lineages (TauL1 and TauL2) and one minor lineage (TauL3). Its morpho-physiological diversity is large, with adaptations to a wide ecological range. Identification of allelic diversity in Ae. tauschii is of utmost importance for efficient breeding and widening of the genetic base of wheat. This study aimed at identifying markers or genes associated with morpho-physiological traits in Ae. tauschii, and at understanding the difference in genetic diversity between the two main lineages. We performed genome-wide association studies of 11 morpho-physiological traits of 343 Ae. tauschii accessions representing the entire range of habitats using 34,829 DArTseq markers. We observed a wide range of morpho-physiological variation among all accessions. We identified 23 marker–trait associations (MTAs) in all accessions, 15 specific to TauL1 and eight specific to TauL2, suggesting independent evolution in each lineage. Some of the MTAs could be novel and have not been reported in bread wheat. The markers or genes identified in this study will help reveal the genes controlling the morpho-physiological traits in Ae. tauschii, and thus in bread wheat even if the plant morphology is different.


Author(s):  
Jie Guo ◽  
Weiping Shi ◽  
Jiahui Guo ◽  
Linqi Yue ◽  
Lei Zhuang ◽  
...  

Abstract BackgroundHeat stress at the late reproductive stages is a common problem encountered in autumn-sown wheat production regions in China with the affected area covering as much as two-thirds of the crop. In order to develop wheat cultivars with heat-tolerance, it is crucial to explore favorable alleles for use in breeding programs.ResultsIn this study, we performed a 90K iSelect SNP genotyping assay on a collection of 207 wheat cultivars subjected to heat stress during grain-fill growth stage in three years (2015-2017). Genotypic analyses of 19 phenotypic traits revealed that heat stress had major impacts on grain weight, size, and quality. Correlation analyses indicated that thousand kernel weight (TKW) was significantly correlated with grain width (GW) and grain perimeter (GP), whereas grain protein content (GPC) was negatively correlated with total starch content (TSC) (P <0.01). We applied heat susceptibility indices (HSI) for different traits to assess heat tolerance. Genome-wide association studies (GWAS) revealed a total of 125 marker-trait associations (MTAs) at 63 SNP loci on 16 chromosomes each accounting for phenotypic variation (R2) of 3.0-21.4%. 17 loci showed significant associations in three environments. The analysis of selective sweeps indicated that RAC875_c19042_2102 (2B), wsnp_Ex_c257_491667 (3B), wsnp_Ex_rep_c101323_86702413 (5A) and BS00061911_51 (7A) were selected between two subpopulations (top 5%).ConclusionsThese four key MTAs detected in the present study are candidates for further genetic dissection and development of molecular markers.


Sign in / Sign up

Export Citation Format

Share Document