Cadmium and cellular signaling cascades: interactions between cell death and survival pathways

2013 ◽  
Vol 87 (10) ◽  
pp. 1743-1786 ◽  
Author(s):  
Frank Thévenod ◽  
Wing-Kee Lee
Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2402
Author(s):  
Sarah N. Croft ◽  
Erin J. Walker ◽  
Reena Ghildyal

Rhinoviruses (RV), like many other viruses, modulate programmed cell death to their own advantage. The viral protease, 3C has an integral role in the modulation, and we have shown that RVA-16 3C protease cleaves Receptor-interacting protein kinase-1 (RIPK1), a key host factor that modulates various cell death and cell survival pathways. In the current study, we have investigated whether this cleavage is conserved across selected RV strains. RIPK1 was cleaved in cells infected with strains representing diversity across phylogenetic groups (A and B) and receptor usage (major and minor groups). The cleavage was abrogated in the presence of the specific 3C protease inhibitor, Rupintrivir. Interestingly, there appears to be involvement of another protease (maybe 2A protease) in RIPK1 cleavage in strains belonging to genotype B. Our data show that 3C protease from diverse RV strains cleaves RIPK1, highlighting the importance of the cleavage to the RV lifecycle.


2018 ◽  
Vol 24 (27) ◽  
pp. 3176-3183 ◽  
Author(s):  
Rohit Gundamaraju ◽  
Ravichandra Vemuri ◽  
Wai Chin Chong ◽  
Dominic P. Geraghty ◽  
Rajaraman Eri

Initiating anti-apoptotic signaling or triggering cell death depends to a great extent on the nature or source of cellular stress and cell type. Interplay between each stress response eventually determines the fate of stressed cell. Numerous factors induce cell death by a number of pathways including apoptosis, autophagy and necrosis. Not surprisingly, some of the pathways are interrelated to each other through a mediator that could articulate the entire mechanism. The present review attempts to consolidate all the pathways included in intrinsic cellular stress such as oxidative stress and autophagy, endoplasmic reticular stress (ERS) and mitophagy and apoptosis as fate in cell stress. These stress responses are a hallmark of numerous diseases including neurodegenerative diseases, diabetes and cancer. Understanding the cross-talk between different intrinsic cell stress responses will help to develop new therapeutic targets and hence lead to the development of new therapeutics.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zirong Deng ◽  
Sabba Hassan ◽  
Muhammad Rafiq ◽  
Hongshui Li ◽  
Yang He ◽  
...  

Eriodictyol is a flavonoid that belongs to a subclass of flavanones and is widespread in citrus fruits, vegetables, and medicinally important plants. Eriodictyol has been anticipated to explain the method of its activity via multiple cellular signaling cascades. Eriodictyol is an effective natural drug source to maintain higher health standards due to its excellent therapeutic roles in neuroprotection, cardioprotective activity, hepatoprotective activity, antidiabetes and obesity, and skin protection and having highly analgesic, antioxidant, and anti-inflammatory effects, antipyretic and antinociceptive actions, antitumor activity, and much more. This review aims to highlight the modes of action of eriodictyol against various diseases via multiple cellular signaling pathways.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4440-4440
Author(s):  
Tracey Lin ◽  
Eric Lowe ◽  
Alana Lerner ◽  
Christopher J. Kirk ◽  
Shirin Arastu-Kapur

In recent years, new agents for multiple myeloma treatment (e.g., proteasome inhibitors) have become more efficacious, yet nearly all patients eventually relapse and develop refractory disease. Growing evidence suggests that clonal heterogeneity in multiple myeloma may constitute the basis for treatment resistance. Therefore, a multi-pronged approach with novel agents is needed to increase the efficacy of standard therapy and prevent or overcome resistance to standard treatments. We have undertaken a research effort to discover novel targets that potentiate the anti-tumor effects of proteasome inhibition in myeloma cells. We hypothesized that proteins that are stabilized in tumor cells following proteasome inhibition likely constitute components of both pro-apoptotic and pro-survival pathways. A mass spectrometry approach, referred to as UbiScan®, was employed to determine the identity and levels of cellular proteins modified with ubiquitin. MM cell lines (U266 and NCI-H929) were treated with either carfilzomib (CFZ) or bortezomib (BTZ) for 1 hour and the ubiquitome was profiled at 1 and 3 hours after culture in drug-free media. A concentration of 125 nM was chosen in order to reflect physiologically relevant drug and target inhibition levels and to induce cell death in ∼80% of cells after 48 hours. Approximately 400 proteins showed similar increases in ubiquitination with CFZ or BTZ. One of these proteins was PIM2, a serine/threonine proto-oncogene required for plasma cell proliferation that is highly expressed in multiple myeloma cell lines. We determined that ubiquitination on PIM2 was occurring at lysine 61, which is known to be associated with proteasomal degradation. Four hours after exposure to CFZ, PIM2 ubiquitination increased 34.6 and 24.9 fold in U266 and H929 cells, respectively, and similar changes were measured following BTZ treatment. Western blot analysis of CFZ-treated cells showed a dose-dependent accumulation of total PIM2 protein, confirming that the increase in ubiquitination correlated with protein accumulation. Next, we employed a siRNA-mediated knockdown approach to study the role of PIM2 in proteasome inhibitor mediated-cell death. Knockdown of PIM2 caused a 20% - 50% decrease in viability in both myeloma cell lines. When CFZ was added 48 hours after siRNA transfection, a significant and dose-dependent decrease in viability was observed, suggesting a synergistic interaction. Based on these results, we tested the combination of CFZ and (Z)-5-(4-propoxybenzylidene)thiazolidine-2,4-dione (PIM1/2 inhibitor), which is known to inhibit both PIM1 and PIM2. The PIM1/2 inhibitor decreased levels of phosphorylation on 4E-BP1, a downstream target, confirming its activity in cells. Chemical inhibition of PIM2 potentiated the effect of CFZ in both MM cell lines. These data suggest that the combination of targeting PIM2 and the proteasome will be efficacious in the treatment of multiple myeloma. Disclosures: Lin: Onyx Pharmaceuticals, Inc.: Employment. Lowe:Onyx Pharmaceuticals, Inc.: Employment, Equity Ownership. Lerner:Onyx Pharmaceuticals, Inc.: Employment, Equity Ownership. Kirk:Onyx Pharmaceuticals: Employment, Equity Ownership. Arastu-Kapur:Onyx Pharmaceuticals, Inc.: Employment, Equity Ownership.


2012 ◽  
Vol 62 (7) ◽  
pp. 2184-2191 ◽  
Author(s):  
Hannah K. Delille ◽  
Judith M. Becker ◽  
Sabrina Burkhardt ◽  
Barbara Bleher ◽  
Georg C. Terstappen ◽  
...  

Life Sciences ◽  
2005 ◽  
Vol 78 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Seung Bum Lee ◽  
Sung Hee Hong ◽  
Hoguen Kim ◽  
Hong-Duck Um

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Tünde Pusztahelyi ◽  
István Pócsi

Knowledge on the functions, cooperation, and interplays of the signaling and regulatory pathways of filamentous fungi is crucial when their industrial performance is improved or when new-type antifungals are developed. Many research groups aim at a deeper understanding of vegetative growth signaling because this cascade also influences other important physiological processes including asexual and sexual developments, autolysis and apoptotic cell death as well as the production of a wide array of important secondary metabolites. This review also focuses on how this signaling pathway is interconnected with other signaling cascades setting up a robust but delicately regulated signaling network in the Aspergilli.


Sign in / Sign up

Export Citation Format

Share Document