Lithium treatment in Alzheimer’s disease does not promote cognitive enhancement, but may exert long-term neuroprotective effects

2009 ◽  
Vol 205 (1) ◽  
pp. 169-170 ◽  
Author(s):  
Nunzio Pomara
2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Peter Wostyn ◽  
Debby Van Dam ◽  
Kurt Audenaert ◽  
Peter Paul De Deyn

Alzheimer's disease (AD), the most common type of dementia among older people, is characterized by the accumulation of β-amyloid (Aβ) senile plaques and neurofibrillary tangles composed of hyperphosphorylated tau in the brain. Despite major advances in understanding the molecular etiology of the disease, progress in the clinical treatment of AD patients has been extremely limited. Therefore, new and more effective therapeutic approaches are needed. Accumulating evidence from human and animal studies suggests that the long-term consumption of caffeine, the most commonly used psychoactive drug in the world, may be protective against AD. The mechanisms underlying the suggested beneficial effect of caffeine against AD remain to be elucidated. In recent studies, several potential neuroprotective effects of caffeine have been proposed. Interestingly, a recent study in rats showed that the long-term consumption of caffeine increased cerebrospinal fluid (CSF) production, associated with the increased expression of Na+-K+ATPase and increased cerebral blood flow. Compromised function of the choroid plexus and defective CSF production and turnover, with diminished clearance of Aβ, may be one mechanism implicated in the pathogenesis of late-onset AD. If reduced CSF turnover is a risk factor for AD, then therapeutic strategies to improve CSF flow are reasonable. In this paper, we hypothesize that long-term caffeine consumption could exert protective effects against AD at least in part by facilitating CSF production, turnover, and clearance. Further, we propose a preclinical experimental design allowing evaluation of this hypothesis.


2011 ◽  
Vol 198 (5) ◽  
pp. 351-356 ◽  
Author(s):  
Orestes V. Forlenza ◽  
Breno S. Diniz ◽  
Márcia Radanovic ◽  
Franklin S. Santos ◽  
Leda L. Talib ◽  
...  

BackgroundTwo recent clinical studies support the feasibility of trials to evaluate the disease-modifying properties of lithium in Alzheimer's disease, although no benefits were obtained from short-term treatment.AimsTo evaluate the effect of long-term lithium treatment on cognitive and biological outcomes in people with amnestic mild cognitive impairment (aMCI).MethodForty-five participants with aMCI were randomised to receive lithium (0.25–0.5 mmol/l) (n = 24) or placebo (n = 21) in a 12-month, double-blind trial. Primary outcome measures were the modification of cognitive and functional test scores, and concentrations of cerebrospinal fluid (CSF) biomarkers (amyloid-beta peptide (Aβ42), total tau (T-tau), phosphorylated-tau) (P-tau). Trial registration: NCT01055392.ResultsLithium treatment was associated with a significant decrease in CSF concentrations of P-tau (P = 0.03) and better perform-ance on the cognitive subscale of the Alzheimer's Disease Assessment Scale and in attention tasks. Overall tolerability of lithium was good and the adherence rate was 91%.ConclusionsThe present data support the notion that lithium has disease-modifying properties with potential clinical implications in the prevention of Alzheimer's disease.


2019 ◽  
Vol 215 (5) ◽  
pp. 668-674 ◽  
Author(s):  
Orestes V. Forlenza ◽  
Márcia Radanovic ◽  
Leda L. Talib ◽  
Wagner F. Gattaz

BackgroundExperimental studies indicate that lithium may facilitate neurotrophic/protective responses in the brain. Epidemiological and imaging studies in bipolar disorder, in addition to a few trials in Alzheimer's disease support the clinical translation of these findings. Nonetheless, there is limited controlled data about potential use of lithium to treat or prevent dementia.AimsTo determine the benefits of lithium treatment in patients with amnestic mild cognitive impairment (MCI), a clinical condition associated with high risk for Alzheimer's disease.MethodA total of 61 community-dwelling, physically healthy, older adults with MCI were randomised to receive lithium or placebo (1:1) for 2 years (double-blind phase), and followed-up for an additional 24 months (single-blinded phase) (trial registration at clinicaltrials.gov: NCT01055392). Lithium carbonate was prescribed to yield subtherapeutic concentrations (0.25–0.5 mEq/L). Primary outcome variables were the cognitive (Alzheimer's Disease Assessment Scale – cognitive subscale) and functional (Clinical Dementia Rating – Sum of Boxes) parameters obtained at baseline and after 12 and 24 months. Secondary outcomes were neuropsychological test scores; cerebrospinal fluid (CSF) concentrations of Alzheimer's disease-related biomarkers determined at 0, 12 and 36 months; conversion rate from MCI to dementia (0–48 months).ResultsParticipants in the placebo group displayed cognitive and functional decline, whereas lithium-treated patients remained stable over 2 years. Lithium treatment was associated with better performance on memory and attention tests after 24 months, and with a significant increase in CSF amyloid-beta peptide (Aβ1−42) after 36 months.ConclusionsLong-term lithium attenuates cognitive and functional decline in amnestic MCI, and modifies Alzheimer's disease-related CSF biomarkers. The present data reinforces the disease-modifying properties of lithium in the MCI–Alzheimer's disease continuum.Declaration of interestNone.


2010 ◽  
Vol 127 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Nongnut Uabundit ◽  
Jintanaporn Wattanathorn ◽  
Supaporn Mucimapura ◽  
Kornkanok Ingkaninan

2014 ◽  
Vol 23 (1) ◽  
pp. 33
Author(s):  
Nathalia Liberato Nascimento ◽  
Iwyson Henrique Fernandes da Costa ◽  
Rivelilson Mendes de Freitas

The objective of this study was to conduct a review about the nutritional aspects and their influences on the pathophysiology of Alzheimer’s disease. The review describes the pathophysiology of Alzheimer’s disease, the generally indicated diets, and the nutritional factors that may aggravate the disease based on a literature review using the following keywords in English and Portuguese: “Alzheimer’s disease”, “physiopathology”, “nutritional aspects”, and “antioxidants”. A total of 100 articles were found, 48 in Lilacs and 52 in MedLine, but only 54 articles were selected for the review. The use of antioxidants as free radical scavengers is generally indicated in diets for Alzheimer’s patients. Studies also suggest that caffeine, vitamin B12, and folic acid have neuroprotective effects. Cohort studies found that a high intake of saturated fatty acids and obesity increase the risk of Alzheimer’s disease. People with Alzheimer’s disease should avoid diets high in carbohydrates and saturated fats, and prefer foods high in antioxidants.Keywords: Alzheimer disease; Antioxidants; Neurophysiology; Review literture as topic.


2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2017 ◽  
Vol 14 (4) ◽  
pp. 441-452 ◽  
Author(s):  
Sofia Wenzler ◽  
Christian Knochel ◽  
Ceylan Balaban ◽  
Dominik Kraft ◽  
Juliane Kopf ◽  
...  

Depression is a common neuropsychiatric manifestation among Alzheimer’s disease (AD) patients. It may compromise everyday activities and lead to a faster cognitive decline as well as worse quality of life. The identification of promising biomarkers may therefore help to timely initiate and improve the treatment of preclinical and clinical states of AD, and to improve the long-term functional outcome. In this narrative review, we report studies that investigated biomarkers for AD-related depression. Genetic findings state AD-related depression as a rather complex, multifactorial trait with relevant environmental and inherited contributors. However, one specific set of genes, the brain derived neurotrophic factor (BDNF), specifically the Val66Met polymorphism, may play a crucial role in AD-related depression. Regarding neuroimaging markers, the most promising findings reveal structural impairments in the cortico-subcortical networks that are related to affect regulation and reward / aversion control. Functional imaging studies reveal abnormalities in predominantly frontal and temporal regions. Furthermore, CSF based biomarkers are seen as potentially promising for the diagnostic process showing abnormalities in metabolic pathways that contribute to AD-related depression. However, there is a need for standardization of methodological issues and for replication of current evidence with larger cohorts and prospective studies.


Sign in / Sign up

Export Citation Format

Share Document