Viscoelastic behavior and toughness of the DGEBA epoxy resin with 1,2-diaminocyclohexane: effect of functionalized poly(dimethylsiloxane), diglycidyl ether, PDMS-DGE, pre-reacted with 1,2-diaminocyclohexane

2021 ◽  
Author(s):  
José Antonio Arcos-Casarrubias ◽  
Humberto Vázquez-Torres ◽  
Jorge Alberto Granados-Olvera ◽  
Asdrúbal J. Cedeño ◽  
José Manuel Cervantes-Uc
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3682
Author(s):  
Monika Beszterda ◽  
Małgorzata Kasperkowiak ◽  
Magdalena Frańska ◽  
Sandra Jęziołowska ◽  
Rafał Frański

The acetonitrile extracts of can-coating materials have been analyzed by using high-pressure liquid chromatography/electrospray ionization-mass spectrometry (HPLC/ESI-MS). On the basis of detected ions [M + H]+, [M + NH4]+, [M + Na]+ and product ions, the ethoxylated butoxyethanol-bisphenol A diglycidyl ether adducts were identified in two of the analyzed extracts. Although the oxyethylene unit-containing compounds are widely used for the production of different kinds of materials, the ethoxylated species have not been earlier detected in epoxy resin can-coatings.


2014 ◽  
Vol 775-776 ◽  
pp. 588-592
Author(s):  
Camila Rodrigues Amaral ◽  
Ruben Jesus Sanchez Rodriguez ◽  
Magno Luiz Tavares Bessa ◽  
Verônica Scarpini Cândido ◽  
Sergio Neves Monteiro

The correlation between the structural network of a diglycidyl ether of the bisphenol-A (DGEBA) epoxy resin, modified by two distinct aliphatic amines (tetraethylenepentamine TEPA and jeffamine D230), and its mechanical properties, was investigated as possible matrix for abrasive composites applications. Both flexural tests, to determine the yield stress and the elastic modulus, as well as impact tests to determine the notch toughness, were performed. The DGEBA/D230 presented the highest stiffness and toughness but lowest yield stress. This epoxy network also displayed a greater plastic deformation during fracture.


2007 ◽  
Vol 45 (17) ◽  
pp. 2481-2496 ◽  
Author(s):  
Bejoy Francis ◽  
Sabu Thomas ◽  
R. Sadhana ◽  
Nicole Thuaud ◽  
R. Ramaswamy ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ali Kuliaei ◽  
Iraj Amiri Amraei ◽  
Seyed Rasoul Mousavi

Abstract The purpose behind this research was to determine the optimum formulation and investigate the cure kinetics of a diglycidyl ether of bisphenol-A (DGEBA)-based epoxy resin cured by dicyandiamide and diuron for use in prepregs. First, all formulations were examined by the tensile test, and then, the specimens with higher mechanical properties were further investigated by viscometry and tack tests. The cure kinetics of the best formulation (based on tack test) in nonisothermal mode was investigated using differential scanning calorimetry at different heating rates. Kissinger and Ozawa method was used for determining the kinetic parameters of the curing process. The activation energy obtained by this method was 71.43 kJ/mol. The heating rate had no significant effect on the reaction order and the total reaction order was approximately constant ( m + n ≅ 2.1 $m+n\cong 2.1$ ). By comparing the experimental data and the theoretical data obtained by Kissinger and Ozawa method, a good agreement was seen between them. By increasing the degree of conversion, the viscosity decreased; as the degree of conversion increased, so did the slope of viscosity. The results of the tack test also indicated that the highest tack could be obtained with 25% progress of curing.


Author(s):  
Abbas Hassan Faris

In this work, appropriate alternative for diglycidyl ether bisphenol A (DGEBA) was found to avoid the destructive effects of bisphenol A. Lignin, an aromatic compound from palm tree leaves, was used as a renewable material to synthesize a bio-based epoxy resin. Lignin extracted using Kraft pulping process. Kraft Lignin was epoxidized with epichlorohydrin in alkaline medium. Nano-titanium dioxide was used as filler with ratio of 10% to prepare the green epoxy composite. The structure of the Kraft lignin and lignin-based epoxy resin was proven via Infrared spectra (FT-IR) were recorded using solid KBr disk by testing Shimadzu (FT-IR-8300) spectrophotometer. The thermal properties of the curing process of lignin-based epoxy resin and composite were investigate using Differential scanning calorimetry (DSC) analysis. Potentiodynamic measurements data revealed that the anti-corrosion performance of the lignin based epoxy resin. The study demonstrates successful of epoxidation of Kraft lignin. In addition, lignin based eopxy resin showed effective inhibitor for carbon steel in 3.5 wt. % NaCl electrolyte solutions


2013 ◽  
Vol 658 ◽  
pp. 153-157 ◽  
Author(s):  
Yu Yan Liu ◽  
Song Quan Wu ◽  
Li Li ◽  
Yu Ting Liu ◽  
Guo Hua Shan

The degradation behaviour of an anhydride-cured bisphenol A diglycidyl ether (DGEBA) epoxy resin in near-critical water was studied in this paper. The experiments were performed in a stainless steel reactor (100ml) without stirring. Epoxy resin could be decomposed successfully at 270°C for 30 min. The degradation rate of epoxy resin increased with an increase in reaction temperature and reaction pressure. The degradation reaction products were characterized by gas chromatography-mass spectrometry (GC-MS). The degradation reaction was associated with the scission of ester and ether bonds which further destabilizes the epoxy network.


2015 ◽  
Vol 817 ◽  
pp. 797-802 ◽  
Author(s):  
Cai Jiang ◽  
Jian Wei Zhang ◽  
Shao Feng Lin ◽  
Su Ju ◽  
Da Zhi Jiang

Molecular dynamics (MD) simulations on three single walled carbon nanotube (SWCNT) reinforced epoxy resin composites were conducted to study the influence of SWCNT type on the glass transition temperature (Tg) of the composites. The composite matrix is cross-linked epoxy resin based on the epoxy monomers bisphenol A diglycidyl ether (DGEBA) cured by diaminodiphenylmethane (DDM). MD simulations of NPT (constant number of particles, constant pressure and constant temperature) dynamics were carried out to obtain density as a function of temperature for each composite system. The Tg was determined as the temperature corresponding to the discontinuity of plot slopes of the densityvsthe temperature. In order to understand the motion of polymer chain segments above and below the Tg, various energy components and the MSD at various temperatures of the composites were investigated and their roles played in the glass transition process were analyzed. The results show that the Tg of the composites increases with increasing aspect ratio of the embedded SWCNT


Author(s):  
Kannan Dasharathi ◽  
John A. Shaw

Results are reported from an ongoing experimental investigation of the effects of thermo-oxidative aging on the mechanical behavior of an epoxy shape memory polymer (SMP). Chemo-rheological degradation due to macromolecular scission and cross-linking is one of the main factors contributing to the chemical aging of thermo-responsive SMPs. This aging may manifest as residual strain or irreversible material property changes, which can affect the performance and limit the useful life of a SMP. A relatively new epoxy SMP based on the diglycidyl ether of bisphenol A is synthesized, and specimens are tested under uni-axial tension using a dynamic mechanical analyzer. Fundamental viscoelastic behavior and thermal expansion coefficients are first characterized, showing a glass transition near 60 °C. Shape memory cycle experiments are performed at shape fixing temperatures of 80, 125, 150 and 175 °C, and the effect of fixing time at each temperature is examined upon subsequent strain recovery at 80 °C. Performance parameters such as recovery ratio, speed of recovery and residual strain are quantified as a function of shape fixing time and temperature. No effect of chemical aging was seen at a fixing temperature of 80 °C, although the recovery ratio decreases initially with increasing fixing time and stabilizes near 92 %. Only minor effects of chemical aging are seen in the mechanical responses for fixing temperatures of 125 and 150 °C, but specimens exhibit progressively more noticeable color changes that indicate oxidation. Significant effects are observed at the highest fixing temperature of 175 °C, where chemical aging at longer fixing times results in a reduction in recovery rate across the rubber-glass transition temperature, progressively larger residual strains, lack of complete strain recovery at 80 °C, and higher temperatures to achieve 90 % strain recovery.


Sign in / Sign up

Export Citation Format

Share Document