High-strength and long-term durable hydrophobic polystyrene microsphere: a promising ultra-lightweight proppant for fracturing technology

2021 ◽  
Author(s):  
Lizhi Song ◽  
Hui Yuan ◽  
Yunlei Gong ◽  
Changlin He ◽  
Hongyu Zhou ◽  
...  
2009 ◽  
Vol 58 (6) ◽  
pp. 525-532 ◽  
Author(s):  
Yoshitaka NARA ◽  
Masafumi TAKADA ◽  
Daisuke MORI ◽  
Hitoshi OWADA ◽  
Tetsuro YONEDA ◽  
...  

Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Kubota KNC-03 is a grade with a combination of high strength and excellent resistance to oxidation. These properties make this alloy suitable for long-term service at temperature up to 1250 deg C (2282 deg F). This datasheet provides information on physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: Ni-676. Producer or source: Kubota Metal Corporation, Fahramet Division. See also Alloy Digest Ni-662, April 2008.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract ATI 6-2-4-2 is a near-alpha, high strength, titanium alloy that exhibits a good combination of tensile strength, creep strength, toughness, and long-term stability at temperatures up to 425 °C (800 °F). Silicon up to 0.1% frequently is added to improve the creep resistance of the alloy. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ti-169. Producer or Source: ATI.


2021 ◽  
Vol 7 (1) ◽  
pp. eabc5442
Author(s):  
Dianyu Dong ◽  
Caroline Tsao ◽  
Hsiang-Chieh Hung ◽  
Fanglian Yao ◽  
Chenjue Tang ◽  
...  

The high mechanical strength and long-term resistance to the fibrous capsule formation are two major challenges for implantable materials. Unfortunately, these two distinct properties do not come together and instead compromise each other. Here, we report a unique class of materials by integrating two weak zwitterionic hydrogels into an elastomer-like high-strength pure zwitterionic hydrogel via a “swelling” and “locking” mechanism. These zwitterionic-elastomeric-networked (ZEN) hydrogels are further shown to efficaciously resist the fibrous capsule formation upon implantation in mice for up to 1 year. Such materials with both high mechanical properties and long-term fibrous capsule resistance have never been achieved before. This work not only demonstrates a class of durable and fibrous capsule–resistant materials but also provides design principles for zwitterionic elastomeric hydrogels.


2004 ◽  
Vol 50 (8) ◽  
pp. 65-72 ◽  
Author(s):  
Y.Q. Zhao ◽  
G. Sun ◽  
C. Lafferty ◽  
S.J. Allen

A gravel-based tidal flow reed bed system was operated with three different strategies in order to investigate its optimal performance for the treatment of a high strength agricultural wastewater. According to the three strategies, individual reed beds were saturated and unsaturated with the wastewater for different periods while reasonably stable hydraulic and organic loadings were maintained. Experimental results demonstrated that the system produced the highest pollutant removal efficiencies with a relatively short saturated period and long unsaturated period, highlighting the importance of oxygen transfer into reed bed matrices during the treatment. Significant removals of some major organic and inorganic pollutants were achieved under all three operational conditions. Nitrification was not the major route of ammoniacal-nitrogen removal when the system was under high organic loading. Due to the filtration of suspended solids and the accumulation of biomass, gradual clogging of the reed bed matrices took place, which caused concerns over the long-term efficiency of the tidal flow system.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Kiyoshi Kubo ◽  
Hideaki Kushima

Influence of stress on creep deformation and degradation behavior has been investigated. Corresponding to inflection of stress vs. time to rupture curve, difference in recovery phenomena, that was homogeneous in short-term and inhomogeneous in long-term, was observed. Inflection of stress vs. time to rupture curve took place at the stress condition corresponding to half of 0.2% offset yield stress at the temperature. Elastic limit stress of Grade 91 steel was evaluated to be 150MPa at 600°C and 100MPa at 650°C, by means of stress abrupt change test. These stresses were found to be almost the same as half of 0.2% offset yield stress at the temperatures. Inflection of stress vs. time to rupture curve is caused by transient of applied stress from higher level than elastic limit to within elastic range. It has been concluded that long-term creep strength of ferritic creep resistant steels should be predicted from the selected creep rupture data under the stresses lower than elastic limit by considering half of 0.2% offset yield stress at the temperature, by means of Larson-Miller parameter with a constant of 20.


2015 ◽  
Vol 72 (12) ◽  
pp. 2236-2242 ◽  
Author(s):  
L. I. Borges ◽  
C. M. López-Vazquez ◽  
H. García ◽  
J. B. van Lier

In this study, nitrite reduction and methanogenesis in a single-stage upflow anaerobic sludge blanket (UASB) reactor was investigated, using high-strength synthetic domestic wastewater as substrate. To assess long-term effects and evaluate the mechanisms that allow successful nitrite reduction and methanogenesis in a single-stage UASB, sludge was exposed to relatively high nitrite loading rates (315 ± 13 mgNO2−-N/(l.d)), using a chemical oxygen demand (COD) to nitrogen ratio of 18 gCOD/gNO2−-N, and an organic loading rate of 5.4 ± 0.2 gCOD/(l.d). In parallel, the effects of sludge morphology on methanogenesis inhibition were studied by performing short-term batch activity tests at different COD/NO2−-N ratios with anaerobic sludge samples. In long-term tests, denitrification was practically complete and COD removal efficiency did not change significantly after nitrite addition. Furthermore, methane production only decreased by 13%, agreeing with the reducing equivalents requirement for complete NO2− reduction to N2. Apparently, the spatial separation of denitrification and methanogenesis zones inside the UASB reactor allowed nitrite reduction and methanogenesis to occur at the same moment. Batch tests showed that granules seem to protect methanogens from nitrite inhibition, probably due to transport limitations. Combined COD and N removal via nitrite in a single-stage UASB reactor could be a feasible technology to treat high-strength domestic wastewater.


2019 ◽  
Vol 15 (5) ◽  
pp. 385-391
Author(s):  
S.L. Steinke ◽  
L.J. Belgrave ◽  
J.B. Montgomery

Development of a rehabilitation harness to aid in recovery from musculoskeletal injuries is needed because serious complications can arise from long-term use of rescue slings. This study’s objective was to determine the anatomical structures of the horse that can bear significant weight, the potential complications that could arise if a horse is not properly supported by the harness and the % weight compensation achievable with the newly developed harness when used together with a dynamic rehabilitation lift. This dynamic lift can reduce the load the limbs carry, either withers-to-pelvis or left-to-right when used in combination with the rehabilitation harness under development. The rehabilitation harness prototype described here was made of cotton/nylon with sheepskin inserts, forming a blanket with high-strength strapping supporting the load-bearing structures of the horse. This prototype was load tested up to 600 kg, for safety, with no sign of failure. In an adult horse, the harness allowed for 40% load reduction from both front (125 of 303 kg [60% of 506 kg]) and hind (80 of 203 kg [40% of 506 kg]) legs before complications (abnormal posture) occurred. Pressure was measured to determine areas of high pressure which lead to the addition of an H-frame and a figure-eight pattern of strapping to the forelimb support reducing pressure, improving posture and achieving greater load reduction (46% [140 of 301.2 kg]). Abnormalities in respiratory rate or pattern were not observed. Future research will include testing the harness longer term (up to six weeks) with the incorporation of an air-pressurised breastplate to detect high-pressure, high-temperature, high-moisture areas, modifying the design further for improved horse-comfort reducing the risk of complications and enabling long-term use of the harness during rehabilitation.


Author(s):  
Geoff W. Connors

Protection of the pipe during and after pipeline construction is of paramount importance for safety and pipeline integrity. Areas of rock and stone are often encountered during construction of new pipelines. Even with modern pipeline coatings, additional protection for the pipe is necessary where rock or stone exposure is significant. Historically, additional pipe protection used in these types of situations is achieved through adding either a significant layer of sand or select backfill above and below the pipeline (sand padding) and/or by attaching a high-impact resistant, poly-type rock shield around the pipeline during the pipeline installation process. To accommodate sand padding, some form of intermittent support of the pipeline is generally required to elevate the pipeline off the trench bottom. Similar intermittent support is also recommended practice when using poly-type rock shields to keep the pipeline from fully resting on trench rocks. Current methods of in-trench support involve sand piles, sand bags, spray foam and individually formed foam pillows — each with drawbacks: i) Sand Piles are difficult to install and often oval or dent the pipe when improperly placed. ii) Sand bags require hand placement for proper support. In open trenches, this can be time consuming and unsafe. Improper placement can cause the pipe to oval or dent. iii) Spray-in foam is considered to be an obstruction of cathodic protection currents. Newly constructed pipelines full of hydrostatic test water and one metre cover can cause foam to compress excessively. iv) Foam pillows are light and easily placed — but can float out of position and compress or crack under heavy loads. As with all foam, cathodic shielding is always a concern. A new, engineered method of in-trench pipeline support is now available — the Structured Pipeline Pillow (SPP). SPP’s are injection molded and made from high strength, environmentally inert polypropylene or polyethylene resins. Designed to support any size pipeline, SPP’s are most effective with larger diameter, heavier pipelines. One SPP is engineered to carry a single 40′ joint of heavy wall pipeline filled with hydrostatic test water. Compared with current methods, SPP’s: i) Stack tightly for transport. ii) Are light enough for installation from outside the trench and resist floatation when ground water is present. iii) Help ensure the pipeline is centered in the trench during the pipeline installation. iv) Maintain long-term pipe clearance above rocky trench bottoms. v) Ovality and denting concerns are reduced. vi) Allow cathodic protection an easy path to the pipeline. vii) Will never biodegrade. In their extended stacking mode, SPP’s tested well as an effective alternative to wooden skids for many situations such as pipe stockpiling; stringing along the rights-of-way (ROW); and even for some low level skidding during the welding process.


Sign in / Sign up

Export Citation Format

Share Document