γ-Aminobutyric Acid (GABA) Imparts Partial Protection from Heat Stress Injury to Rice Seedlings by Improving Leaf Turgor and Upregulating Osmoprotectants and Antioxidants

2013 ◽  
Vol 33 (2) ◽  
pp. 408-419 ◽  
Author(s):  
Harsh Nayyar ◽  
Ramanpreet Kaur ◽  
Simranjit Kaur ◽  
R. Singh
2021 ◽  
Vol 22 (11) ◽  
pp. 5825
Author(s):  
Anjali Bhardwaj ◽  
Kumari Sita ◽  
Akanksha Sehgal ◽  
Kalpna Bhandari ◽  
Shiv Kumar ◽  
...  

Gradually increasing temperatures at global and local scales are causing heat stress for cool and summer-season food legumes, such as lentil (Lens culinaris Medik.), which is highly susceptible to heat stress, especially during its reproductive stages of development. Hence, suitable strategies are needed to develop heat tolerance in this legume. In the present study, we tested the effectiveness of heat priming (HPr; 6 h at 35 °C) the lentil seeds and a foliar treatment of γ-aminobutyric acid (GABA; 1 mM; applied twice at different times), singly or in combination (HPr+GABA), under heat stress (32/20 °C) in two heat-tolerant (HT; IG2507, IG3263) and two heat-sensitive (HS; IG2821, IG2849) genotypes to mitigate heat stress. The three treatments significantly reduced heat injury to leaves and flowers, particularly when applied in combination, including leaf damage assessed as membrane injury, cellular oxidizing ability, leaf water status, and stomatal conductance. The combined HPr+GABA treatment significantly improved the photosynthetic function, measured as photosynthetic efficiency, chlorophyll concentration, and sucrose synthesis; and significantly reduced the oxidative damage, which was associated with a marked up-regulation in the activities of enzymatic antioxidants. The combined treatment also facilitated the synthesis of osmolytes, such as proline and glycine betaine, by upregulating the expression of their biosynthesizing enzymes (pyrroline-5-carboxylate synthase; betaine aldehyde dehydrogenase) under heat stress. The HPr+GABA treatment caused a considerable enhancement in endogenous levels of GABA in leaves, more so in the two heat-sensitive genotypes. The reproductive function, measured as germination and viability of pollen grains, receptivity of stigma, and viability of ovules, was significantly improved with combined treatment, resulting in enhanced pod number (21–23% in HT and 35–38% in HS genotypes, compared to heat stress alone) and seed yield per plant (22–24% in HT and 37–40% in HS genotypes, in comparison to heat stress alone). The combined treatment (HPr+GABA) was more effective and pronounced in heat-sensitive than heat-tolerant genotypes for all the traits tested. This study offers a potential solution for tackling and protecting heat stress injury in lentil plants.


2008 ◽  
Vol 40 (Supplement) ◽  
pp. S188
Author(s):  
Christopher M. Hearon ◽  
Alberto Ruiz ◽  
Zachary J. Taylor ◽  
Nestor W. Sherman

2016 ◽  
Vol 59 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Zhong Chen ◽  
Yong-Wei Zhou ◽  
Chen Liang ◽  
Ying-Ya Jiang ◽  
Li-Jin Xie

Abstract. This study aims to investigate the changes in the tissue structure, cell apoptosis, antioxidant activity, and cytokine contents of the bursa of Fabricius (BF) in chicks under heat stress, and the regulation mechanism of the protective effect of dietary γ-aminobutyric acid (GABA) on BF in chicks. One-day-old male Wenchang chicks were randomly divided into a control group (CK), heat stress group (HS), and GABA + HS group. The index of BF, area of follicle, density of apoptosis, antioxidant activity (SOD, MDA, and GSH-PX), and cytokine contents (IL-1β, IL-6, TNF-α, and HSP70) in the BF tissue of chicks were determined at the end of week 1–6. Results showed that HS group had significantly decreased index of BF and area of follicle, and significantly increased density of apoptosis compared with CK group (P < 0.05), while GABA + HS group had significantly increased index of BF and area of follicle, and significantly decreased density of apoptosis compared with HS group (P < 0.05). There was no significant difference in the total SOD activity in the BF tissue among the three groups, except that GABA + HS group had an increase in total SOD activity in week 6, which was significantly different from that of CK and HS groups (P < 0.05). The GSH-PX activity in the BF tissue was high in all groups in the first 3 weeks, but decreased in week 4–6. The MDA content in the BF tissue of HS and GABA + HS groups was significantly increased compared with that of CK group (P < 0.05). There was no significant difference in the HSP70 content between HS and GABA + HS groups (P > 0.05), both of which were significantly decreased compared with that of CK group (P < 0.05). The contents of IL-1β, IL-6, and TNF-α in the BF tissue increased with age in all three groups in week 1–6. In the later BF development, the content of IL-1β in HS group was significantly decreased compared with that of CK group, whereas the content of IL-6 was significantly increased (P < 0.05), and no significant difference was observed in the content of TNF-α. In contrast, the content of IL-6 in GABA + HS group was significantly decreased compared with that of CK group, and the content of TNF-α was significantly increased (P < 0.05). These results suggested that heat stress caused structural damage to the BF tissue, increased cell apoptosis, and decreased antioxidant activity in the BF of chicks. GABA could alleviate the negative effects of heat stress on the BF tissue and improve the structural and functional development of BF in chicks, by increasing the antioxidant activity, down-regulating IL-6 content, and reducing cell apoptosis in the BF tissue of chicks.


Sign in / Sign up

Export Citation Format

Share Document