scholarly journals Correction to: Physiological Mechanism of Drought-Resistant Rice Coping With Drought Stress

Author(s):  
Benfu Wang ◽  
Xiaolong Yang ◽  
Liang Chen ◽  
Yuanyuan Jiang ◽  
Hongying Bu ◽  
...  
2020 ◽  
Author(s):  
Benfu Wang ◽  
Xiaolong Yang ◽  
Jianping Cheng ◽  
Liang Chen ◽  
Yuanyuan Jiang ◽  
...  

Abstract Drought stress is one of major threats to rice production. The weakening of leaf photosynthesis due to drought is the main reason for the reduction of grain yield, but its mechanism is still obscure. The objectives of this study were to reveal the physiological mechanism of drought stress affecting photosynthetic capacity and grain yield. Pot experiments were conducted with three rice cultivars, Hanyou113 (HY113), Huanghuazhan (HHZ) and Zhonghan3 (ZH3) under four water management treatments (traditional flooding (CK), mild drought stress (LD), moderate drought stress (MD) and severe drought stress (HD)) in 2013 and 2014. Compared with CK, grain yield was significantly reduced by 14.9%, 30.8% and 12.8% in HY113, HHZ and ZH3 under mild drought stress, 32.9%, 33.7% and 22.9% in HY113, HHZ and ZH3 under moderate drought stress and 53.6%, 45.6% and 30.7% in HY113, HHZ and ZH3 under severe drought stress, respectively. The photosynthetic rate (Pn) decreased by 49.0% from 20.0 to 10.2 µmol m-2 s-1 in HY113, and 67.6% from 23.4 to 7.58 µmol m-2 s-1 in HHZ, and 39.3% from 23.4 to 14.2 in ZH3. The Pn of HHZ was similar to that of ZH3 under CK conditions. The yield reduction of drought-resistant cultivars was smaller than that of conventional cultivars. Maintaining leaf water potentia (LWP), Pn, photosystem II (PSII) original light energy conversion efficiency, non–photochemical quenching coefficient (NPQ), and increasing in the ratio of photochemical reaction energy in fluorescence and antioxidant enzyme activity, is the physiological basis to achieve a relatively high photosynthesis. These traits could be the target for breeder to developing drought-tolerant varieties.


Author(s):  
Benfu Wang ◽  
Xiaolong Yang ◽  
Jianping Cheng ◽  
Liang Chen ◽  
Yuanyuan Jiang ◽  
...  

1998 ◽  
Vol 46 (4) ◽  
pp. 387 ◽  
Author(s):  
Philip K. Groom ◽  
Byron B. Lamont

Within the Proteaceae, 353 species confined to 7 genera in the Grevilleoideae have woody fruits. The majority (> 70%) occur in fire-prone vegetation on nutrient-poor, summer-dry soils of south-western Australia. These species are characterised by large, winged seeds contained within serotinous follicles. Seed release is mediated by desiccation of the follicle walls resulting from fruit death, although wet–dry cycles are required in some genera. After release, germination must take place by the next wet season, as the seeds are not long-lived. Seeds are particularly high in protein (40–60%), P (1–2%) and Fe (10–60‰) compared with other Proteaceae. Seeds are favoured food for pre- and post-dispersal granivores (insects, birds, rodents) and young seedlings are favoured by herbivores (insects, marsupials), with the more serotinous fruits providing extra protection for their seeds. Successful establishment is facilitated by the protective and water retentive role of the testa during germination, and the remobilisation of N and P from the cotyledons to the seedling within 10 weeks of emergence. Drought stress reduces seedling establishment in otherwise favourable postfire microsites and prevents it (assisted by herbivores) in mature vegetation. Typically, < 10% of seeds released after fire become seedlings, and < 50% of these survive the first summer. Among fire-killed species, species that produce few seeds are more likely to have drought-resistant seedlings, often associated with larger seeds and/or needle-shaped leaves. Species that resprout after fire produce a few large viable seeds per plant, whereas fire-killed species produce many smaller seeds. Of all the Proteaceae, the ecology of woody-fruited species is best known, providing great scope for comparative biology studies.


2015 ◽  
Vol 3 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Minakshi Choudhary ◽  
Jayanand Manjhi ◽  
Anvesha Sinha

Introduction: Pearl millet (Pennisetum glaucum) is an important cereal of traditional farming systems that has the natural ability to withstandvarious abiotic stresses such as drought, which is one of the most important manifestations of abiotic stress in plants. These plants havehowever evolved mechanisms that allow them to adapt and survive prolonged periods of water deficit at some level or form of plant structure,if not at the whole plant level. The hostile conditions augment the formation of reactive oxygen species (ROS) during physiological stresses inplants which are combated by various enzymatic and non-enzymatic mechanisms. The present study aims at examining the role of fourimportant enzymes namely Ascorbic peroxidase (APX), Peroxidase (POX), Catalase (CAT) and Superoxide Dismutase(SOD) expressed duringdrought stress in pearl millet (Pennisetum glaucum). Method: 12 and 22 days old seedlings of Pennisetum cultivar HHB-68 were subjectedto drought stress by treatment of 30% Polyethylene glycol for different time periods 30min (T1), 2hr (T2), 4hr (T3), 8hr (T4), 16hr (T5), 24hr(T6) and 48hr (T7) respectively, monitored by examining RWC of seedlings. The treatment seedlings were then used for investigating thelevels of enzymes activity in response to prolonged dehydration periods of 22 days. The enzyme activity of POX, APX, CAT and SOD wereassayed. Result: Enzymes expression was assayed for each treatment sets at both time intervals. Drought stress was observed to causeremarkable increase in POX, APX and SOD activity while incidence of CAT enzyme decreased with the increasing period of water deficit.Conclusion: Prolonged periods of water deficiency causes significant variations in expression of various enzymes in Pennisetum glaucum,known to be involved in ROS scavenging and drought stress management. The study provides a sturdy validation of the role of these enzymesas potent mechanisms undertaken by drought resistant plants for successful management of drought stress, which can be used for thedevelopment of more efficient and economic drought resistant cultivars.DOI: http://dx.doi.org/10.3126/ijasbt.v3i1.12278       Int J Appl Sci Biotechnol, Vol. 3(1): 134-138 


2014 ◽  
Vol 94 (4) ◽  
pp. 633-641 ◽  
Author(s):  
Wang Xing ◽  
Hongwei Zhao ◽  
Detang Zou

Xing, W., Zhao, H. and Zou, D. 2014. Detection of main-effect and epistatic QTL for yield-related traits in rice under drought stress and normal conditions. Can. J. Plant Sci. 94: 633–641. Drought-resistant cultivars play an important role in maintaining high and stable crop yields under drought-stress conditions. However, the genetic mechanism of drought resistance must first be elucidated. Therefore, 220 recombinant inbred lines from a cross between Xiaobaijingzi (upland rice) and Kongyu 131 (Oryza sativa L.) were used to identify quantitative trait loci (QTLs) for yield and yield-component traits under drought stress and control conditions in Heilongjiang and Tieli. As a result, 23 main-effect QTLs and 11 digenic interactions were detected for four traits under the above two conditions. Of the main-effect QTLs, 10 and 8 were detected under control and drought-stress conditions, respectively; and five common QTLs were observed. In addition, five QTLs were found to be responsible for the difference across the two conditions. Among all epistatic QTLs, three types of epistatic QTLs were observed: one was between two main-effect QTLs, such as qPH-3-1 and qPH-7-2; one was between one locus with and another without main-effect, e.g., qPN-4 and qPN-3-2; and one was between two loci without main-effect, e.g., qYP-6-1 and qYP-12-2. In the above epistatic examples, their recombinant genotypes tended to reduce plant height and the number of grains per panicle and increase yield, respectively. Our results provide a good foundation for designed molecular breeding of drought-resistant rice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samantha J. Monohon ◽  
Daniel K. Manter ◽  
Jorge M. Vivanco

AbstractRhizobacterial communities can contribute to plant trait expression and performance, including plant tolerance against abiotic stresses such as drought. The conditioning of microbial communities related to disease resistance over generations has been shown to develop suppressive soils which aid in plant defense responses. Here, we applied this concept for the development of drought resistant soils. We hypothesized that soils conditioned under severe drought stress and tomato cultivation over two generations, will allow for plant selection of rhizobacterial communities that provide plants with improved drought resistant traits. Surprisingly, the plants treated with a drought-conditioned microbial inoculant showed significantly decreased plant biomass in two generations of growth. Microbial community composition was significantly different between the inoculated and control soils within each generation (i.e., microbial history effect) and for the inoculated soils between generations (i.e., conditioning effect). These findings indicate a substantial effect of conditioning soils on the abiotic stress response and microbial recruitment of tomato plants undergoing drought stress.


2020 ◽  
Author(s):  
Wei Wang ◽  
Lei Wang ◽  
Ling Wang ◽  
Meilian Tan ◽  
Collins O. Ogutu ◽  
...  

Abstract Background Oil flax (Linum usitatissimum L.) also as known as linseed is one of the most important oil crops in the world. Although linseed was reported to show better tolerance to abiotic stress conditions compared to other oil crops, the molecular mechanisms underlying linseed tolerance to drought stress are largely unknown. Moreover, as a result of climate change, drought dramatically reduces linseed yield and quality, but so far very little is known about how linseed coordinates the drought-resistant genes expression of response to different level of drought stress on the genome-wide level. Results To explore the transcriptional response of linseed to drought stress (DS) and repeated drought stress (RD), we first determined the drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of drought-resistant variety (Z141) and drought-sensitive variety (NY-17) using single-molecule real-time sequencing and RNA-sequencing under drought stress (DS) and repeated drought stress (RD) at the seedling stage. Gene Ontology (GO) enrichment analysis showed that compared with NY-17, the up-regulated genes of Z141 were enriched in more functional pathways related to plant drought tolerance under drought stress. In addition, the number of up-regulated genes in linseed under RD was more 30% than it under DS. In addition, a total of, 4,436 linseed transcription factors were identified, of these, 1,190 genes were responsive to stress treatments. Finally, the expression patterns of proline biosynthesis and DNA repair structural genes were verified by RT- PCR. Conclusions Drought tolerance of Z141 may be related to its specifically up-regulated drought tolerance genes under drought stress. Several variable physiological responses occurred in repeated than in sustained drought treatment. Sum up, this study provides a new perspective to understand the drought adaptability of linseed.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Peilin Chen ◽  
Jing Chen ◽  
Min Sun ◽  
Haidong Yan ◽  
Guangyan Feng ◽  
...  

Abstract Background Newly formed polyploids may experience short-term adaptative changes in their genome that may enhance the resistance of plants to stress. Considering the increasingly serious effects of drought on biofuel plants, whole genome duplication (WGD) may be an efficient way to proceed with drought resistant breeding. However, the molecular mechanism of drought response before/after WGD remains largely unclear. Result We found that autoploid switchgrass (Panicum virgatum L.) 8X Alamo had higher drought tolerance than its parent amphidiploid 4X Alamo using physiological tests. RNA and microRNA sequencing at different time points during drought were then conducted on 8X Alamo and 4X Alamo switchgrass. The specific differentially expressed transcripts (DETs) that related to drought stress (DS) in 8X Alamo were enriched in ribonucleoside and ribonucleotide binding, while the drought-related DETs in 4X Alamo were enriched in structural molecule activity. Ploidy-related DETs were primarily associated with signal transduction mechanisms. Weighted gene co-expression network analysis (WGCNA) detected three significant DS-related modules, and their DETs were primarily enriched in biosynthesis process and photosynthesis. A total of 26 differentially expressed microRNAs (DEmiRs) were detected, and among them, sbi-microRNA 399b was only expressed in 8X Alamo. The targets of microRNAs that were responded to polyploidization and drought stress all contained cytochrome P450 and superoxide dismutase genes. Conclusions This study explored the drought response of 8X and 4X Alamo switchgrass on both physiological and transcriptional levels, and provided experimental and sequencing data basis for a short-term adaptability study and drought-resistant biofuel plant breeding.


2020 ◽  
Vol 21 (23) ◽  
pp. 9174
Author(s):  
Hongbing Li ◽  
Yulin Li ◽  
Qingbo Ke ◽  
Sang-Soo Kwak ◽  
Suiqi Zhang ◽  
...  

Drought is one of the most important constraints on the growth and productivity of many crops, including sorghum. However, as a primary sensing organ, the plant root response to drought has not been well documented at the proteomic level. In the present study, we compared physiological alteration and differential accumulation of proteins in the roots of sorghum (Sorghum bicolor) inbred line BT×623 response to Polyethylene Glycol (PEG)-induced drought stress at the seedling stage. Drought stress (up to 24 h after PEG treatment) resulted in increased accumulation of reactive oxygen species (ROS) and subsequent lipid peroxidation. The proline content was increased in drought-stressed plants. The physiological mechanism of sorghum root response to drought was attributed to the elimination of harmful free radicals and to the alleviation of oxidative stress via the synergistic action of antioxidant enzymes, such as superoxide dismutase, peroxidase, and polyphenol oxidase. The high-resolution proteome map demonstrated significant variations in about 65 protein spots detected on Coomassie Brilliant Blue-stained 2-DE gels. Of these, 52 protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-TOF MS) representing 49 unique proteins; the levels of 43 protein spots were increased, and 22 were decreased under drought condition. The proteins identified in this study are involved in a variety of cellular functions, including carbohydrate and energy metabolism, antioxidant and defense response, protein synthesis/processing/degradation, transcriptional regulation, amino acid biosynthesis, and nitrogen metabolism, which contribute jointly to the molecular mechanism of outstanding drought tolerance in sorghum plants. Analysis of protein expression patterns and physiological analysis revealed that proteins associated with changes in energy usage; osmotic adjustment; ROS scavenging; and protein synthesis, processing, and proteolysis play important roles in maintaining root growth under drought stress. This study provides new insight for better understanding of the molecular basis of drought stress responses, aiming to improve plant drought tolerance for enhanced yield.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingwei Zhang ◽  
Dazhuang Huang ◽  
Xiaojie Zhao ◽  
Man Zhang

AbstractIris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: ‘Little Dream’ > ‘Music Box’ > ‘X’Brassie’ > ‘Blood Stone’ > ‘Cherry Garden’ > ‘Memory of Harvest’ > ‘Immortality’ > ‘White and Gold’ > ‘Tantara’ > ‘Clarence’. Using the high-drought-resistant cultivar ‘Little Dream’ as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar ‘Little Dream’ under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.


Sign in / Sign up

Export Citation Format

Share Document