scholarly journals Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingwei Zhang ◽  
Dazhuang Huang ◽  
Xiaojie Zhao ◽  
Man Zhang

AbstractIris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: ‘Little Dream’ > ‘Music Box’ > ‘X’Brassie’ > ‘Blood Stone’ > ‘Cherry Garden’ > ‘Memory of Harvest’ > ‘Immortality’ > ‘White and Gold’ > ‘Tantara’ > ‘Clarence’. Using the high-drought-resistant cultivar ‘Little Dream’ as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar ‘Little Dream’ under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.

2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Fantao Zhang ◽  
Yi Zhou ◽  
Meng Zhang ◽  
Xiangdong Luo ◽  
Jiankun Xie

Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice (Oryza rufipogon, DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars.


2020 ◽  
Vol 71 (19) ◽  
pp. 6092-6106 ◽  
Author(s):  
Ping-Xia Zhao ◽  
Zi-Qing Miao ◽  
Jing Zhang ◽  
Si-Yan Chen ◽  
Qian-Qian Liu ◽  
...  

Abstract Drought is one of the most important environmental factors limiting plant growth and productivity. The molecular mechanisms underlying plant drought resistance are complex and not yet fully understood. Here, we show that the Arabidopsis MADS-box transcription factor AGL16 acts as a negative regulator in drought resistance by regulating stomatal density and movement. Loss-of-AGL16 mutants were more resistant to drought stress and had higher relative water content, which was attributed to lower leaf stomatal density and more sensitive stomatal closure due to higher leaf ABA levels compared with the wild type. AGL16-overexpressing lines displayed the opposite phenotypes. AGL16 is preferentially expressed in guard cells and down-regulated in response to drought stress. The expression of CYP707A3 and AAO3 in ABA metabolism and SDD1 in stomatal development was altered in agl16 and overexpression lines, making them potential targets of AGL16. Using chromatin immunoprecipitation, transient transactivation, yeast one-hybrid, and electrophoretic mobility shift assays, we demonstrated that AGL16 was able to bind the CArG motifs in the promoters of the CYP707A3, AAO3, and SDD1 and regulate their transcription, leading to altered leaf stomatal density and ABA levels. Taking our findings together, AGL16 acts as a negative regulator of drought resistance by modulating leaf stomatal density and ABA accumulation.


2021 ◽  
Author(s):  
Yang Cao ◽  
fei song ◽  
Xingtang Zhao ◽  
Liming He ◽  
Yaguang Zhan

Abstract Background: In this study, sodium nitrate (SNP, a donor of nitric oxide) and methyl jasmonate (MJ) were used as exogenous hormones. The experiment was conducted with the offspring (interspecific hybrid) D110 of ash and ash, and their respective parents (non-interspecific hybrid) D113 and 4-3 as experimental materials. The experiment set up three experimental groups of drought stress, exogenous hormone SNP and MJ, and a control group under normal growth (non-drought stress), to study the physiological indicators and gene expression of manchurian ash. Result: The results showed that under drought stress and exogenous application of hormone SNP or MJ, there were significant differences between hybrids and parents in plant growth, photosynthesis, defense enzyme activity, hormone content and gene expression.Conclusions: This experiment provides a new theoretical support for the existing hormone breeding methods of manchurian ash, which can improve the drought resistance of manchurian ash and increase its survival rate in the wild. Increasing the growth rate and breeding efficiency of manchurian ash brings new ideas.


2020 ◽  
Author(s):  
Guori Gao ◽  
Zhongrui Lv ◽  
Guoyun Zhang ◽  
Jiayi Li ◽  
Jianguo Zhang ◽  
...  

Abstract Drought is the most severe abiotic stress and hinders the normal growth and development of plants. Sea buckthorn (Hippophae rhamnoides Linn.) is a typical drought-resistant tree species. In this study, the leaves of the H. rhamnoides ssp. sinensis (“FN”) and H. rhamnoides ssp. mongolica (“XY”) were selected during drought-recovery cycles for RNA sequencing, and physiological and biochemical analyses. The results revealed that drought stress significantly decreased leaf water potential, net photosynthetic rate, and stomatal conductance in both sea buckthorn subspecies. Similarly, the contents of flavone, flavonol, isoflavone and flavanone significantly decreased under drought stress in “XY.” Conversely, in “FN,” the flavone and abscisic acid (ABA) contents were significantly higher under drought stress and recovered after rehydration. Meanwhile, 4,618 and 6,100 differentially expressed genes (DEGs) were identified under drought stress in “FN” and “XY,” respectively. In total, 5,164 DEGs were observed in the comparison between “FN” and “XY” under drought stress. This was more than the 3,821 and 3,387 DEGs found when comparing the subspecies under control and rehydration conditions, respectively. These DEGs were mainly associated with carotenoid biosynthesis, flavonoid biosynthesis, photosynthesis, and plant hormone signal transduction. Six hub DEGs (ABCG5, ABCG22, ABCG32, ABCG36, ABF2 and PYL4) were identified to respond to drought stress based on WGCNA and BLAST analysis using DroughtDB. These six DEGs were annotated to play roles in the ABA-dependent signaling pathway. Sixteen RNA sequencing results involving eight genes and similar expression patterns (12/16) were validated using quantitative real-time PCR. The biochemical and molecular mechanisms underlying the regulation of drought responses by ABA and flavonoids in sea buckthorn were clarified. In this study, gene co-expression networks were constructed, and the results suggested that the mutual regulation of ABA and flavonoid signaling contributed to the difference in drought resistance between the different sea buckthorn subspecies.


2007 ◽  
Vol 26 (2) ◽  
pp. 143-149 ◽  
Author(s):  
Zayil Salazar ◽  
Yvonne Ducolomb ◽  
Miguel Betancourt ◽  
Edmundo Bonilla ◽  
Leticia Cortés ◽  
...  

Malathion is a widely used pesticide and there is evidence that it could alter mammal’s germ and somatic cells, as well as cell lines. There are not enough studies showing how the nonacute malathion doses affect gene expression. This study analyzes gene expression alterations in pig morular embryos exposed in vitro , for 96 h, to several malathion concentrations after in vitro fertilization. cDNA libraries of isolated morular embryos were created and differential screenings performed to identify target genes. Seven clones were certainly identified. Genes related to mitochondrial metabolism as cytochrome c subunits I and III, nuclear genes such as major histocompatibility complex I (MHC I), and a hypothetical protein related with a splicing factor were the target of malathion’s deregulation effect. The widespread use of malathion as a pesticide should be regarded with reproductive implications and more detailed analysis would yield more about molecular mechanisms of malathion injury on embryo cells.


2021 ◽  
Vol 22 (24) ◽  
pp. 13402
Author(s):  
Fawang Liu ◽  
Tahir Ali ◽  
Zhong Liu

Asarum sieboldii Miq. is a leading economic crop and a traditional medicinal herb in China. Leaf-blade and petiole are the only aerial tissues of A. sieboldii during the vegetative growth, playing a vital role in the accumulation and transportation of biomass energy. They also act as critical indicators of drought in agricultural management, especially for crops having underground stems. During drought, variations in the morphology and gene expression of the leaves and petioles are used to control agricultural irrigation and production. Besides, such stress can also alter the differential gene expression in these tissues. However, little is known about the drought-tolerant character of the aerial parts of A. sieboldii. In this study, we examined the physiological, biochemical and transcriptomic responses to the drought stress in the leaf blades and petioles of A. sieboldii. The molecular mechanism, involving in drought stress response, was elucidated by constructing the cDNA libraries and performing transcriptomic sequencing. Under drought stress, a total of 2,912 and 2,887 unigenes were differentially expressed in the leaf blade and petiole, respectively. The detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in drought tolerance. In response to drought, the leaf blade and petiole displayed a general physiological character, a higher SOD and POD activity, a higher MDA content and lower chlorophyll content. Three unigenes encoding POD were up-regulated, which can improve POD activity. Essential oil in petiole was extracted. The relative contents of methyleugenol and safrole in essential oil were increased from 0.01% to 0.05%, and 3.89% to 16.97%, respectively, while myristicin slightly reduced from 24.87% to 21.52%. Additionally, an IGS unigene, involved in eugenol biobiosynthesis, was found up-regulated under drought stress, which was predicated to be responsible for the accumulation of methyleugenol and safrole. Simple sequence repeats (SSRs) were characterized in of A. sieboldii, and a total of 5,466 SSRs were identified. Among them, mono-nucleotides were the most abundant repeat units, accounting for 44.09% followed by tri-, tetra-, penta and hexa-nucleotide repeats. Overall, the present work provides a valuable resource for the population genetics studies of A. sieboldii. Besides, it provides much genomic information for the functional dissection of the drought-resistance in A. sieboldii., which will be useful to understand the bio-regulatory mechanisms linked with drought-tolerance to enhance its yield.


2020 ◽  
Author(s):  
Wei Wang ◽  
Lei Wang ◽  
Ling Wang ◽  
Meilian Tan ◽  
Collins O. Ogutu ◽  
...  

Abstract Background Oil flax (Linum usitatissimum L.) also as known as linseed is one of the most important oil crops in the world. Although linseed was reported to show better tolerance to abiotic stress conditions compared to other oil crops, the molecular mechanisms underlying linseed tolerance to drought stress are largely unknown. Moreover, as a result of climate change, drought dramatically reduces linseed yield and quality, but so far very little is known about how linseed coordinates the drought-resistant genes expression of response to different level of drought stress on the genome-wide level. Results To explore the transcriptional response of linseed to drought stress (DS) and repeated drought stress (RD), we first determined the drought tolerance of different linseed varieties. Then we performed full-length transcriptome sequencing of drought-resistant variety (Z141) and drought-sensitive variety (NY-17) using single-molecule real-time sequencing and RNA-sequencing under drought stress (DS) and repeated drought stress (RD) at the seedling stage. Gene Ontology (GO) enrichment analysis showed that compared with NY-17, the up-regulated genes of Z141 were enriched in more functional pathways related to plant drought tolerance under drought stress. In addition, the number of up-regulated genes in linseed under RD was more 30% than it under DS. In addition, a total of, 4,436 linseed transcription factors were identified, of these, 1,190 genes were responsive to stress treatments. Finally, the expression patterns of proline biosynthesis and DNA repair structural genes were verified by RT- PCR. Conclusions Drought tolerance of Z141 may be related to its specifically up-regulated drought tolerance genes under drought stress. Several variable physiological responses occurred in repeated than in sustained drought treatment. Sum up, this study provides a new perspective to understand the drought adaptability of linseed.


2020 ◽  
Vol 88 (2) ◽  
Author(s):  
. TURHADI ◽  
Hayati MINARSIH ◽  
Imron RIYADI ◽  
. PRIYONO ◽  
Asmini BUDIANI

Drought is one of the limiting factors in crop cultivation, such as in oil palm (Elaeis guineensis Jacq.). The transgenic approaches are expected to increase plant tolerance to drought stress and minimize low productivity when drought occurs. Proline is an osmoprotectant compound in plants which its biosynthesis involved the P5CS gene. The objective of this study was to evaluate the tolerance level of P5CS-transgenic oil palm to drought stress induced by polyethylene glycol 6000 (PEG-6000). In this present study, the transgenic and non-transgenic oil palms were treated by  0, 2, and 4% PEG-6000 under in vitro conditions. The experiment was arranged as a factorial completely randomized design with three replications. The drought level score, total chlorophyll content, carotenoids, and proline content, as well as P5CS gene expression in leaf tissues were observed at 7 and 14 days after stress treatments. The result showed that transgenic plantlets had a lower drought level score than those of non-transgenic lines. A concentration of 4% PEG-6000 treatment reduced the total chlorophyll and carotenoids contents than that of 2% concentration in non-transgenic plantlets at 7 and 14 day after treatments (DAT). In addition, proline content and P5CS gene expression level in transgenic had been significantly increased during stress treatment. Based on these results, it can be concluded that the P5CS transgene increased the drought stress tolerance of oil palm.


2019 ◽  
Vol 20 (4) ◽  
pp. 852 ◽  
Author(s):  
Xiaohui Yang ◽  
Jie Liu ◽  
Jianfei Xu ◽  
Shaoguang Duan ◽  
Qianru Wang ◽  
...  

Potato (Solanum tuberosum L.) is one of the three most important food crops worldwide; however, it is strongly affected by drought stress. The precise molecular mechanisms of drought stress response in potato are not very well understood. The diploid potato genotype P3-198 has been verified to be highly resistant to drought stress. Here, a time-course experiment was performed to identify drought resistance response genes in P3-198 under polyethylene glycol (PEG)-induced stress using RNA-sequencing. A total of 1665 differentially expressed genes (DEGs) were specifically identified, and based on gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the transcription factor activity, protein kinase activity, and the plant hormone signal transduction process were significantly enriched. Annotation revealed that these DEGs mainly encode transcription factors, protein kinases, and proteins related to redox regulation, carbohydrate metabolism, and osmotic adjustment. In particular, genes encoding abscisic acid (ABA)-dependent signaling molecules were significantly differentially expressed, which revealed the important roles of the ABA-dependent signaling pathway in the early response of P3-198 to drought stress. Quantitative real-time PCR experimental verification confirmed the differential expression of genes in the drought resistance signaling pathway. Our results provide valuable information for understanding potato drought-resistance mechanisms, and also enrich the gene resources available for drought-resistant potato breeding.


2019 ◽  
Vol 20 (10) ◽  
pp. 2501 ◽  
Author(s):  
A-Li Li ◽  
Zhuang Wen ◽  
Kun Yang ◽  
Xiao-Peng Wen

MicroRNA396 (miR396) is a conserved microRNA family that targets growth-regulating factors (GRFs), which play significant roles in plant growth and stress responses. Available evidence justifies the idea that miR396-targeted GRFs have important functions in many plant species; however, no genome-wide analysis of the pitaya (Hylocereus polyrhizus) miR396 gene has yet been reported. Further, its biological functions remain elusive. To uncover the regulatory roles of miR396 and its targets, the hairpin sequence of pitaya miR396b and the open reading frame (ORF) of its target, HpGRF6, were isolated from pitaya. Phylogenetic analysis showed that the precursor miR396b (MIR396b) gene of plants might be clustered into three major groups, and, generally, a more recent evolutionary relationship in the intra-family has been demonstrated. The sequence analysis indicated that the binding site of hpo-miR396b in HpGRF6 is located at the conserved motif which codes the conserved “RSRKPVE” amino acid in the Trp–Arg–Cys (WRC) region. In addition, degradome sequencing analysis confirmed that four GRFs (GRF1, c56908.graph_c0; GRF4, c52862.graph_c0; GRF6, c39378.graph_c0 and GRF9, c54658.graph_c0) are hpo-miR396b targets that are regulated by specific cleavage at the binding site between the 10th and 11th nucleotides from the 5′ terminus of hpo-miR396b. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that hpo-miR396b is down-regulated when confronted with drought stress (15% polyethylene glycol, PEG), and its expression fluctuates under other abiotic stresses, i.e., low temperature (4 ± 1 °C), high temperature (42 ± 1 °C), NaCl (100 mM), and abscisic acid (ABA; 0.38 mM). Conversely, the expression of HpGRF6 showed the opposite trend to exposure to these abiotic stresses. Taken together, hpo-miR396b plays a regulatory role in the control of HpGRF6, which might influence the abiotic stress response of pitaya. This is the first documentation of this role in pitaya and improves the understanding of the molecular mechanisms underlying the tolerance to drought stress in this fruit.


Sign in / Sign up

Export Citation Format

Share Document