scholarly journals Effect of Madden–Julian Oscillation Occurrence Frequency on the Interannual Variability of Northern Hemisphere Stratospheric Wave Activity in Winter

2018 ◽  
Vol 31 (13) ◽  
pp. 5031-5049 ◽  
Author(s):  
Feiyang Wang ◽  
Wenshou Tian ◽  
Fei Xie ◽  
Jiankai Zhang ◽  
Yuanyuan Han

This study uses reanalysis datasets and numerical experiments to investigate the influence of the occurrence frequency of the individual phases of the Madden–Julian oscillation (MJO) on the interannual variability of stratospheric wave activity in the middle and high latitudes of the Northern Hemisphere during boreal winter [November–February (NDJF)]. Our analysis reveals that the occurrence frequency of MJO phase 4 in winter is significantly positively correlated with the interannual variability of the Eliassen–Palm (E–P) flux divergence anomalies in the northern extratropical stratosphere; that is, higher (lower) occurrence frequency of MJO phase 4 corresponds to weaker (stronger) upward wave fluxes and increased (decreased) E–P flux divergence anomalies in the middle and upper stratosphere at mid-to-high latitudes, which implies depressed (enhanced) wave activity accompanied by a stronger (weaker) polar vortex in that region. The convection anomalies over the Maritime Continent related to MJO phase 4 excite a Rossby wave train that propagates poleward to middle and high latitudes, and is in antiphase with the climatological stationary waves of wavenumber 1 at middle and high latitudes. As the spatial distribution of the convection anomalies during MJO phase 7 has an almost opposite, but weaker, pattern to that during MJO phase 4, the occurrence frequency of MJO phase 7 has an opposite and weaker effect on the northern extratropical stratosphere to MJO phase 4. However, the other MJO phases (1, 2, 3, 5, 6, and 8) cannot significantly influence the northern extratropical stratosphere because the wave responses in these phases are neither totally in nor out of phase with the background stationary wavenumber 1.

2007 ◽  
Vol 85 (11) ◽  
pp. 1143-1158 ◽  
Author(s):  
S V Petelina ◽  
E J Llewellyn ◽  
D A Degenstein

Interseasonal variations in the properties of Polar Mesospheric Clouds (PMC) measured by the Optical Spectrograph and InfraRed Imager System (OSIRIS) on the Odin satellite during the northern hemisphere (NH) summers of 2002–2005 are described in this work. The lowest PMC latitudes were about 50°N for every season with the number of detections smallest in 2002 and largest in 2004. In 2004 and 2005, the detection of PMCs at lower latitudes was asymmetric with the larger number of clouds observed during the first half and fewer at during the second half of the season. PMC occurrence frequency in 2002 was 25–30% lower than in 2003–2005, and the season duration was shortest in 2002 and longest in 2004. For all NH seasons except 2002, PMC occurrence frequency was systematically 20–50% higher than the Solar Mesosphere Explorer climatology. Similar to PMC occurrence frequency, cloud brightness was lowest in 2002 and highest in 2004 at all latitudes. The daily mean brightness maximum at 50°–60°N was less than 8% of that at highest latitudes. This contrasts with the maximum PMC occurrence frequency that reached nearly 30% at these latitudes in 2004 and 2005. PMC brightness showed no apparent seasonal asymmetry at lower latitudes in 2004 and 2005 that was seen in the occurrence frequency. Significant, by about a factor of 2, oscillations observed in the daily mean cloud brightness at high latitudes were also not seen in the corresponding occurrence frequency. These results suggest that the occurrence frequency alone does not provide detailed information on the cloud population and ice mass in the mesosphere. There is no significant interannual variability in the seasonal mean OSIRIS PMC altitude. Its value was very close to 8350 km for all seasons except 2004 when it was 83.42 km. The mean PMC altitudes for each season increased by 0.3–0.6 when the minimum altitude in the database was increased from 80 to 82 km. PACS Nos.: 92.05.Fg, 92.60.hc, 92.60.Jq, 92.60.Mt, 92.60.Nv, 92.60.Vb


1996 ◽  
Vol 14 (4) ◽  
pp. 464-467 ◽  
Author(s):  
R. P. Kane

Abstract. The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.


2021 ◽  
Vol 34 (1) ◽  
pp. 397-414
Author(s):  
Guosen Chen

AbstractA recent study has revealed that the Madden–Julian oscillation (MJO) during boreal winter exhibits diverse propagation patterns that consist of four archetypes: standing MJO, jumping MJO, slow eastward propagating MJO, and fast eastward propagating MJO. This study has explored the diversity of teleconnection associated with these four MJO groups. The results reveal that each MJO group corresponds to distinct global teleconnections, manifested as diverse upper-tropospheric Rossby wave train patterns. Overall, the teleconnections in the fast and slow MJO are similar to those in the canonical MJO constructed by the real-time multivariate MJO (RMM) indices, while the teleconnections in the jumping and standing MJO generally lose similarities to those in the canonical MJO. The causes of this diversity are investigated using a linearized potential vorticity equation. The various MJO tropical heating patterns in different MJO groups are the main cause of the diverse MJO teleconnections, as they induce assorted upper-level divergent flows that act as Rossby-wave sources through advecting the background potential vorticity. The variation of the Asian jet could affect the teleconnections over the Pacific jet exit region, but it plays an insignificant role in causing the diversity of global teleconnections. The numerical investigation with a linear baroclinic model shows that the teleconnections can be interpreted as linear responses to the MJO’s diabatic heating to various degrees for different MJO groups, with the fast and slow MJO having higher linear skill than the jumping and standing MJO. The results have broad implications in the MJO’s tropical–extratropical interactions and the associated impacts on global weather and climate.


2011 ◽  
Vol 24 (20) ◽  
pp. 5435-5453 ◽  
Author(s):  
Yu Kosaka ◽  
Shang-Ping Xie ◽  
Hisashi Nakamura

Abstract The summertime mei-yu–baiu rainband over East Asia displays considerable interannual variability. A singular value decomposition (SVD) analysis for interannual variability reveals that precipitation anomalies over the mei-yu–baiu region are accompanied by in situ anomalies of midtropospheric horizontal temperature advection. Anomalous warm (cool) advection causes increased (decreased) mei-yu–baiu precipitation locally by inducing adiabatic ascent (descent). The anomalous precipitation acts to reinforce the vertical motion, forming a feedback system. By this mechanism, the remotely forced anomalous atmospheric circulation can induce changes in mei-yu–baiu precipitation. The quasi-stationary precipitation anomalies induced by this mechanism are partially offset by transient eddies. The SVD analysis also reveals the association of mei-yu–baiu precipitation anomalies with several teleconnection patterns, suggesting remote induction mechanisms. The Pacific–Japan (PJ) teleconnection pattern, which is associated with anomalous convection over the tropical western North Pacific, contributes to mei-yu–baiu precipitation variability throughout the boreal summer. The PJ pattern mediates influences of the El Niño–Southern Oscillation in preceding boreal winter on mei-yu–baiu precipitation. In early summer, the leading covariability pattern between precipitation and temperature advection also features the Silk Road pattern—a wave train along the summertime Asian jet—and another wave train pattern to the north along the polar-front jet that often leads to the development of the surface Okhotsk high.


2016 ◽  
Vol 29 (12) ◽  
pp. 4597-4616 ◽  
Author(s):  
Stephanie A. Henderson ◽  
Eric D. Maloney ◽  
Elizabeth A. Barnes

Abstract The persistent and quasi-stationary nature of atmospheric blocking is associated with long-lasting extreme weather conditions that influence much of the Northern Hemisphere during boreal winter. The Madden–Julian oscillation (MJO) has been previously shown to influence important factors for blocking, including Rossby wave breaking and the North Atlantic Oscillation (NAO). However, the extent to which the MJO influences blocking across the Northern Hemisphere is not yet fully understood. Utilizing a two-dimensional blocking index, composites of North Pacific, North Atlantic, and European blocking are generated relative to MJO phase. In the west and central Pacific, all MJO phases demonstrate significant changes in blocking, particularly at high latitudes. A significant decrease in east Pacific and Atlantic blocking occurs following phase 3 of the MJO, characterized by enhanced convection over the tropical East Indian Ocean and suppressed convection in the west Pacific. The opposite-signed MJO heating during phase 7 is followed by a significant increase in east Pacific and Atlantic blocking. A significant decrease in European blocking follows MJO phase 4, with an increase after phase 6. The phase 6 European blocking is hypothesized to result from two preexisting conditions: 1) an anomalous anticyclone over the Atlantic and 2) a preceding negative Pacific–North American (PNA) pattern initialized and influenced by MJO heating.


2019 ◽  
Vol 77 (3) ◽  
pp. 1101-1118
Author(s):  
A. K. Smith ◽  
N. M. Pedatella ◽  
Z. K. Mullen

Abstract Simulations with the Community Earth System Model, version 2, using the Whole Atmosphere Community Climate Model version 6 [CESM2(WACCM6)] configuration, show evidence of dynamical coupling from the high latitudes of the winter middle atmosphere to the tropics and the middle and high latitudes of the summer hemisphere. Analysis of monthly and daily output covering 195 simulation years indicates that the response in the summer middle and high latitudes has a weak overall magnitude of a few kelvins or less in temperature but has a repeatable pattern whose structure and phase agree with observational studies. Lag correlation indicates that perturbations in wave activity in the winter stratosphere, as quantified by Eliassen–Palm (EP) flux divergence, are accompanied by perturbations in the transformed Eulerian-mean meridional wind extending into the summer hemisphere. There is not an appreciable correlation with momentum forcing in the summer hemisphere by either resolved waves or parameterized gravity waves. The rapid circulation response and the lack of a wave response in the summer hemisphere suggest that the interhemispheric coupling that is simulated in WACCM6 in both the stratosphere and the mesosphere owes its existence to a circulation that develops to restore balance to the zonally averaged state of the atmosphere. This is an alternative explanation for the coupling from the winter stratosphere to the summer mesosphere; previous studies have assumed a necessary role for wave activity in the summer hemisphere.


2021 ◽  
Author(s):  
Yuanpu Li ◽  
Zhiping Wen

AbstractThe exploration of the trend in stratospheric sudden warmings (SSWs) is conducive to predict SSWs in the future. Utilizing the National Centre for Environmental Prediction Reanalysis (NCEP) (1948–2020) and Japanese 55-year Reanalysis (JRA55) (1958–2020), we investigated the duration and strength of SSWs in the Northern Hemisphere occurred in the boreal winter (December–February). We found the duration of SSWs tends to increase and the strength of SSWs tends to strengthen from 1948 to 2003. After 2003, these trends did not continue. We utilized the observed cloudiness from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) to find that the convective activities in the tropical Central Pacific were enhanced during 1948–2003, and the enhancement of the convective activities did not continue after 2003. The circulation anomalies caused by the enhanced convective activities propagate to the high latitudes through wave trains. The anomalies of circulation and the climatological circulation at high latitudes interfere with each other and superimpose, which has a significant impact on planetary wave 1 (PW1). As a result, the PW1 also showed an increasing trend from 1948 to 2003 and a decreasing trend after 2003. After the stratosphere filters out the planetary wave with a large wavenumber, PW1 accounts for more proportion of planetary waves, which causes the trend in SSWs to change.


2012 ◽  
Vol 69 (1) ◽  
pp. 79-96 ◽  
Author(s):  
Kyong-Hwan Seo ◽  
Seok-Woo Son

Abstract The detailed dynamical mechanisms of the upper-tropospheric circulation response to the Madden–Julian oscillation (MJO) convection are examined by integrating a primitive equation model. A series of initial-value calculations with the climatological boreal winter background flow forced by the MJO-like thermal forcing successfully capture the key aspects of the observed circulation response to the MJO convection. This suggests that a large fraction of MJO-related circulation anomalies are direct responses to tropical heating in both the tropics and extratropics and can be largely explained by linear dynamics. It is found that MJO-like dipole heatings not only intensify tropical upper-tropospheric anomalies but also weaken them at certain regions because of the interaction between equatorial Kelvin and Rossby waves. The Rossby wave train primarily excited by horizontal divergence of upper-level perturbation flow propagates northeastward and then heads back to the equator. In this way, Rossby wave activity once generated over the subtropical Indian Ocean tends to enhance the equatorial upper-tropospheric anomalies over the tropical Atlantic and West Africa that have already been created by the zonally propagating equatorial Rossby and Kelvin waves. A ray path tracing reveals that a successive downstream development of Rossby wave train mostly results from the large-scale waves with zonal wavenumbers 2–3 in the Northern Hemisphere and 3–5 in the Southern Hemisphere. The sensitivity tests show that the overall results are quite robust. It is found, however, that the detailed circulation response to the MJO-like forcing is somewhat sensitive to the background flow. This suggests that MJO-related circulation anomalies may have nonnegligible long-term variability and change as background flow varies.


2021 ◽  
pp. 1-53
Author(s):  
Yu Nie ◽  
Yang Zhang

Abstract Large meridional excursions of a jet stream are conducive to blocking and related midlatitude weather extremes, yet the physical mechanism of jet meandering is not well understood. This paper examines the mechanisms of jet meandering in boreal winter through the lens of a potential vorticity (PV)-like tracer advected by reanalysis winds in an advection-diffusion model. As the geometric structure of the tracer displays a compact relationship with PV in observations and permits a linear mapping from tracer to PV at each latitude, jet meandering can be understood by the geometric structure of tracer field that is only a function of prescribed advecting velocities. This one-way dependence of tracer field on advecting velocities provides a new modeling framework to quantify the effects of time mean flow versus transient eddies on the spatiotemporal variability of jet meandering. It is shown that the mapped tracer wave activity resembles the observed spatial pattern and magnitude of PV wave activity for the winter climatology, interannual variability, and blocking-like wave events. The anomalous increase in tracer wave activity for the composite over interannual variability or blocking-like wave events is attributed to weakened composite mean winds, indicating that the low-frequency winds are the leading factor for the overall distributions of wave activity. It is also found that the tracer model underestimates extreme wave activity, likely due to the lack of feedback mechanisms. The implications for the mechanisms of jet meandering in a changing climate are also discussed.


Sign in / Sign up

Export Citation Format

Share Document