Activation of p38 MAPK suppresses matrix metalloproteinase-1 gene expression induced by platelet-derived growth factor

2003 ◽  
Vol 294 (12) ◽  
pp. 552-558 ◽  
Author(s):  
Hideharu Endo ◽  
Atsushi Utani ◽  
Hiroshi Shinkai
2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Margaret R. Passmore ◽  
Maria Nataatmadja ◽  
John F. Fraser

The use of an appropriate control group in human research is essential in investigating the level of a pathological disorder. This study aimed to compare three alternative sources of control lung tissue and to determine their suitability for gene and protein expression studies. Gene and protein expression levels of the vascular endothelial growth factor (VEGF) and gelatinase families and their receptors were measured using real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The gene expression levels of VEGFA, placental growth factor (PGF), and their receptors, fms-related tyrosine kinase 1 (FLT1), and kinase insert domain receptor (KDR) as well as matrix metalloproteinase-2 (MMP-2) and the inhibitors, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-2 were significantly higher in lung cancer resections. The gene expression level of MMP-9 was significantly lower in the corresponding samples. Altered protein expression was also detected, depending on the area assessed. The results of this study show that none of the three control groups studied are completely suitable for gene and protein studies associated with the VEGF and gelatinase families, highlighting the need for researchers to be selective in which controls they opt for.


2008 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
Tom Appleton ◽  
Shirine Usmani ◽  
John Mort ◽  
Frank Beier

Background: Articular cartilage degeneration is a hallmark of osteoarthritis (OA). We previously identified increased expression of transforming growth factor alpha (TGF?) and chemokine (C-C motif) ligand 2 (CCL2) in articular cartilage from a rat modelof OA (1,2). We subsequently reported that TGF? signalling modified chondrocyte cytoskeletal organization, increased catabolic and decreased anabolic gene expression and suppressed Sox9. Due to other roles in chondrocytes, we hypothesized that the effects ofTGF? on chondrocytes are mediated by Rho/ROCK and MEK/ERK signaling pathways. Methods: Primary cultures of chondrocytes and articularosteochondral explants were treated with pharmacological inhibitors of MEK1/2(U0126), ROCK (Y27632), Rho (C3), p38 MAPK (SB202190) and PI3K (LY294002) to elucidate pathway involvement. Results: Using G-LISA we determined that stimulation of primary chondrocytes with TGF? activates RhoA. Reciprocally, inhibition of RhoA/ROCK but not other signalling pathways prevents modification of the actin cytoskeleton in responseto TGF?. Inhibition of MEK/ERKsignaling rescued suppression of anabolic gene expression by TGF? including SOX9 mRNA and protein levels. Inhibition of MEK/ERK, Rho/ROCK, p38 MAPK and PI3K signalling pathways differentially controlled the induction of MMP13 and TNF? gene expression. TGF? also induced expression of CCL2 specifically through MEK/ERK activation. In turn, CCL2 treatment induced the expression of MMP3 and TNF?. Finally, we assessed cartilage degradation by immunohistochemical detection of type II collagen cleavage fragments generated by MMPs. Blockade of RhoA/ROCK and MEK/ERK signalling pathways reduced the generation of type IIcollagen cleavage fragments in response to TGF? stimulation. Conclusions: Rho/ROCK signalling mediates TGF?-induced changes inchondrocyte morphology, while MEK/ERK signalling mediates the suppression ofSox9 and its target genes, and CCL2 expression. CCL2, in turn, induces the expression of MMP3 and TNF?, two potent catabolic factors known to be involved in OA. These pathways may represent strategic targets for interventional approaches to treating cartilage degeneration in osteoarthritis. References: 1. Appleton CTG et al. Arthritis Rheum 2007;56:1854-68. 2. Appleton CTG et al. Arthritis Rheum 2007; 56:3693-705.


Sign in / Sign up

Export Citation Format

Share Document