Ecophysiological responses to light availability in three Blechnum species (Pteridophyta, Blechnaceae) of different ecological breadth

Oecologia ◽  
2005 ◽  
Vol 145 (2) ◽  
pp. 251-256 ◽  
Author(s):  
A. Saldaña ◽  
E. Gianoli ◽  
C. H. Lusk
Author(s):  
Juan Alejandro Perdomo ◽  
Peter Buchner ◽  
Elizabete Carmo-Silva

AbstractDiurnal rhythms and light availability affect transcription–translation feedback loops that regulate the synthesis of photosynthetic proteins. The CO2-fixing enzyme Rubisco is the most abundant protein in the leaves of major crop species and its activity depends on interaction with the molecular chaperone Rubisco activase (Rca). In Triticum aestivum L. (wheat), three Rca isoforms are present that differ in their regulatory properties. Here, we tested the hypothesis that the relative abundance of the redox-sensitive and redox-insensitive Rca isoforms could be differentially regulated throughout light–dark diel cycle in wheat. While TaRca1-β expression was consistently negligible throughout the day, transcript levels of both TaRca2-β and TaRca2-α were higher and increased at the start of the day, with peak levels occurring at the middle of the photoperiod. Abundance of TaRca-β protein was maximal 1.5 h after the peak in TaRca2-β expression, but the abundance of TaRca-α remained constant during the entire photoperiod. The redox-sensitive TaRca-α isoform was less abundant, representing 85% of the redox-insensitive TaRca-β at the transcript level and 12.5% at the protein level. Expression of Rubisco large and small subunit genes did not show a consistent pattern throughout the diel cycle, but the abundance of Rubisco decreased by up to 20% during the dark period in fully expanded wheat leaves. These results, combined with a lack of correlation between transcript and protein abundance for both Rca isoforms and Rubisco throughout the entire diel cycle, suggest that the abundance of these photosynthetic enzymes is post-transcriptionally regulated.


Ecotoxicology ◽  
2021 ◽  
Author(s):  
Ambra Dell’Orso ◽  
Elena Kuzminsky ◽  
Victoria Bermejo-Bermejo ◽  
Raquel Ruiz-Checa ◽  
Rocío Alonso-Del Amo ◽  
...  

2021 ◽  
Vol 11 (19) ◽  
pp. 13153-13165
Author(s):  
Theodor D. Leininger ◽  
Emile S. Gardiner ◽  
Brian Roy Lockhart ◽  
Nathan M. Schiff ◽  
Alphus Dan Wilson ◽  
...  
Keyword(s):  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yash Sondhi ◽  
Emily A. Ellis ◽  
Seth M. Bybee ◽  
Jamie C. Theobald ◽  
Akito Y. Kawahara

AbstractOpsins, combined with a chromophore, are the primary light-sensing molecules in animals and are crucial for color vision. Throughout animal evolution, duplications and losses of opsin proteins are common, but it is unclear what is driving these gains and losses. Light availability is implicated, and dim environments are often associated with low opsin diversity and loss. Correlations between high opsin diversity and bright environments, however, are tenuous. To test if increased light availability is associated with opsin diversification, we examined diel niche and identified opsins using transcriptomes and genomes of 175 butterflies and moths (Lepidoptera). We found 14 independent opsin duplications associated with bright environments. Estimating their rates of evolution revealed that opsins from diurnal taxa evolve faster—at least 13 amino acids were identified with higher dN/dS rates, with a subset close enough to the chromophore to tune the opsin. These results demonstrate that high light availability increases opsin diversity and evolution rate in Lepidoptera.


1980 ◽  
Vol 23 (11) ◽  
Author(s):  
Judith L. Connor

AbstractField studies of the benthic macroalgae of fifteen selected Chesapeake Bay oyster communities were conducted over a period of a year (March 1977 to February 1978). Algal distribu tion and seasonal occurrence were studied in relation to changes in the physical environment. Salinity, temperature, and light availability were important factors in the spatial and temporal distributions of algae in these subtidal habitats.Seventeen species of Chlorophyta, Phaeophyta, and Rhodophyta were recorded from the fifteen study sites distributed over 130 kilometers within the Maryland portion of Chesapeake Bay. Species of Chlorophyta were associated with oyster communities throughout the year of study with maximum numbers of species and maximum biomass occurring in spring. Only once was a member of the Phaeophyta encountered; a single filamentous species, Ectocarpus, was collected during winter. Species of Rhodophyta were present throughout the year at the study sites.Most of the algae collected reproduced asexually by spores and/or vegetative fragments. Sexual reproduction occurred in some of the red algal species. The presence of tetrasporic and cystocarpic plants of Dasya baillouviana and Polysiphonia harveyi var. olneyi may indicate that the usual triphasic Florideophycean life history occurs in this estuary.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1084
Author(s):  
Ivan N. Ivanov ◽  
Vilém Zachleder ◽  
Milada Vítová ◽  
Maria J. Barbosa ◽  
Kateřina Bišová

An increase in temperature can have a profound effect on the cell cycle and cell division in green algae, whereas growth and the synthesis of energy storage compounds are less influenced. In Chlamydomonas reinhardtii, laboratory experiments have shown that exposure to a supraoptimal temperature (39 °C) causes a complete block of nuclear and cellular division accompanied by an increased accumulation of starch. In this work we explore the potential of supraoptimal temperature as a method to promote starch production in C. reinhardtii in a pilot-scale photobioreactor. The method was successfully applied and resulted in an almost 3-fold increase in the starch content of C. reinhardtii dry matter. Moreover, a maximum starch content at the supraoptimal temperature was reached within 1–2 days, compared with 5 days for the control culture at the optimal temperature (30 °C). Therefore, supraoptimal temperature treatment promotes rapid starch accumulation and suggests a viable alternative to other starch-inducing methods, such as nutrient depletion. Nevertheless, technical challenges, such as bioreactor design and light availability within the culture, still need to be dealt with.


2021 ◽  
Vol 13 (8) ◽  
pp. 1513
Author(s):  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Christian Ammer ◽  
Martin Ehbrecht ◽  
Katharina Willim ◽  
...  

The structural complexity of the understory layer of forests or shrub layer vegetation in open shrublands affects many ecosystem functions and services provided by these ecosystems. We investigated how the basal area of the overstory layer, annual and seasonal precipitation, annual mean temperature, as well as light availability affect the structural complexity of the understory layer along a gradient from closed forests to open shrubland with only scattered trees. Using terrestrial laser scanning data and the understory complexity index (UCI), we measured the structural complexity of sites across a wide range of precipitation and temperature, also covering a gradient in light availability and basal area. We found significant relationships between the UCI and tree basal area as well as canopy openness. Structural equation models (SEMs) confirmed significant direct effects of seasonal precipitation on the UCI without mediation through basal area or canopy openness. However, annual precipitation and temperature effects on the UCI are mediated through canopy openness and basal area, respectively. Understory complexity is, despite clear dependencies on the available light and overall stand density, significantly and directly driven by climatic parameters, particularly the amount of precipitation during the driest month.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Tomás López-Londoño ◽  
Claudia T. Galindo-Martínez ◽  
Kelly Gómez-Campo ◽  
Luis A. González-Guerrero ◽  
Sofia Roitman ◽  
...  

AbstractDegradation of water optical properties due to anthropogenic disturbances is a common phenomenon in coastal waters globally. Although this condition is associated with multiple drivers that affect corals health in multiple ways, its effect on light availability and photosynthetic energy acquisition has been largely neglected. Here, we describe how declining the water optical quality in a coastal reef exposed to a turbid plume of water originating from a man-made channel compromises the functionality of the keystone coral species Orbicella faveolata. We found highly variable water optical conditions with significant effects on the light quantity and quality available for corals. Low-light phenotypes close to theoretical limits of photoacclimation were found at shallow depths as a result of reduced light penetration. The estimated photosynthetically fixed energy depletion with increasing depth was associated with patterns of colony mortality and vertical habitat compression. A numerical model illustrates the potential effect of the progressive water quality degradation on coral mortality and population decline along the depth gradient. Collectively, our findings suggest that preserving the water properties seeking to maximize light penetration through the water column is essential for maintaining the coral reef structure and associated ecosystem services.


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


Sign in / Sign up

Export Citation Format

Share Document