Outdoor microalgae cultivation in airlift photobioreactor at high irradiance and temperature conditions: effect of batch and fed-batch strategies, photoinhibition, and temperature stress

2018 ◽  
Vol 42 (2) ◽  
pp. 331-344 ◽  
Author(s):  
Suvidha Gupta ◽  
Sanjay B. Pawar ◽  
R. A. Pandey ◽  
Gajanan S. Kanade ◽  
Satish K. Lokhande
2013 ◽  
Vol 405-408 ◽  
pp. 944-947
Author(s):  
Su Juan Dai ◽  
Cun Lv ◽  
Qing Chen

This paper has conducted the study on calculation of temperature stress for general constrained flexural members under temperature variation in view of the method of structural mechanics, and analyzed the temperature stress of an industrial workshop of large-span steel structure under frequent temperature conditions combined with the climate characteristics of Qingdao city, come to the conclusion that temperature stress should be considered. This conclusion provided a certain reference for the same type industrial building of large-span steel structure.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 426
Author(s):  
Tao Luo ◽  
Yuting Zhang ◽  
Chunni Zhang ◽  
Matthew N. Nelson ◽  
Jinzhan Yuan ◽  
...  

Low temperature inhibits rapid germination and successful seedling establishment of rapeseed (Brassica napus L.), leading to significant productivity losses. Little is known about the genetic diversity for seed vigor under low-temperature conditions in rapeseed, which motivated our investigation of 13 seed germination- and emergence-related traits under normal and low-temperature conditions for 442 diverse rapeseed accessions. The stress tolerance index was calculated for each trait based on performance under non-stress and low-temperature stress conditions. Principal component analysis of the low-temperature stress tolerance indices identified five principal components that captured 100% of the seedling response to low temperature. A genome-wide association study using ~8 million SNP (single-nucleotide polymorphism) markers identified from genome resequencing was undertaken to uncover the genetic basis of seed vigor related traits in rapeseed. We detected 22 quantitative trait loci (QTLs) significantly associated with stress tolerance indices regarding seed vigor under low-temperature stress. Scrutiny of the genes in these QTL regions identified 62 candidate genes related to specific stress tolerance indices of seed vigor, and the majority were involved in DNA repair, RNA translation, mitochondrial activation and energy generation, ubiquitination and degradation of protein reserve, antioxidant system, and plant hormone and signal transduction. The high effect variation and haplotype-based effect of these candidate genes were evaluated, and high priority could be given to the candidate genes BnaA03g40290D, BnaA06g07530D, BnaA09g06240D, BnaA09g06250D, and BnaC02g10720D in further study. These findings should be useful for marker-assisted breeding and genomic selection of rapeseed to increase seed vigor under low-temperature stress.


2009 ◽  
Vol 32 (4) ◽  
pp. 477-481 ◽  
Author(s):  
Pietro Carlozzi ◽  
Cristina Pintucci ◽  
Raffaella Piccardi ◽  
Arianna Buccioni ◽  
Sara Minieri ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingyun Yuan ◽  
Yushan Zheng ◽  
Libing Nie ◽  
Liting Zhang ◽  
Ying Wu ◽  
...  

Abstract Background Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. Results According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. Conclusions Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.


2012 ◽  
Vol 60 (1) ◽  
pp. 57-70
Author(s):  
A. Hamada ◽  
A. Metwally ◽  
R. El-Shazoly

Concerns about the vulnerability of agricultural production to climate change are increasing. The establishment of seedlings at early growth stages of crop plants, one of the most important determinants of high yield, is severely affected by extreme temperatures. Therefore, efforts must be made to achieve high germination rate and vigorous early growth under extreme temperature conditions.Alfalfa is a perennial forage crop with high yield, good quality and high protein content, but is frequently exposed to extreme temperature conditions. The primary purpose of this investigation was to test the hypothesis that L-ascorbic acid (AsA) and pyridoxine (B6) pretreatment can completely or partially alleviate the effect of extreme temperature stress on seed germination and other physiological activities of alfalfa seedlings. Such treatment could be of importance for the establishment of alfalfa seedlings under temperature conditions colder or hotter than the optimum.Several parameters were studied in alfalfa seedlings primed before germination with 50 ppm ascorbic acid or 50 ppm pyridoxine for 6 h and then subjected to various temperatures (10, 15, 20, 25, 30, 35 and 40°C) for 7 days.The germination percentage of alfalfa seeds was negatively affected by extreme temperature. The vitamin treatments failed to alleviate the depressive effect of extreme temperature stress on seed germination. Extreme temperature also induced a reduction in the growth, total water content and respiration rate of alfalfa seedlings. Seed soaking in vitamins modified the stress-induced changes in respiration rate and growth criteria. Temperatures above or below the optimum stimulated the accumulation of soluble carbohydrates in alfalfa seedlings. Treatment with AsA or B6 partially or completely retarded the stimulatory effects of extreme temperature on soluble carbohydrate accumulation in the seedlings except in the case of 40 °C, where a significant stimulation was detected. However, extreme temperature stress and its interactive effects with AsA or B6 induced an inhibitory effect on the accumulation of free amino acids and soluble proteins in the test seedlings.


Sign in / Sign up

Export Citation Format

Share Document