Radiative balance and temperature of differently pigmented cotton canopies

Author(s):  
Henrique D. R. Carvalho ◽  
Kevin J. McInnes ◽  
James L. Heilman ◽  
Murilo M. Maeda
Keyword(s):  
2020 ◽  
Author(s):  
◽  
Julija Pauraitė-Dudek

The impact of submicron aerosol source and physical-chemical parameters on atmospheric radiative balance


2021 ◽  
Vol 13 (3) ◽  
pp. 350
Author(s):  
Rosa Delia García ◽  
Emilio Cuevas ◽  
Victoria Eugenia Cachorro ◽  
Omaira E. García ◽  
África Barreto ◽  
...  

Precipitable water vapor retrievals are of major importance for assessing and understanding atmospheric radiative balance and solar radiation resources. On that basis, this study presents the first PWV values measured with a novel EKO MS-711 grating spectroradiometer from direct normal irradiance in the spectral range between 930 and 960 nm at the Izaña Observatory (IZO, Spain) between April and December 2019. The expanded uncertainty of PWV (UPWV) was theoretically evaluated using the Monte-Carlo method, obtaining an averaged value of 0.37 ± 0.11 mm. The estimated uncertainty presents a clear dependence on PWV. For PWV ≤ 5 mm (62% of the data), the mean UPWV is 0.31 ± 0.07 mm, while for PWV > 5 mm (38% of the data) is 0.47 ± 0.08 mm. In addition, the EKO PWV retrievals were comprehensively compared against the PWV measurements from several reference techniques available at IZO, including meteorological radiosondes, Global Navigation Satellite System (GNSS), CIMEL-AERONET sun photometer and Fourier Transform Infrared spectrometry (FTIR). The EKO PWV values closely align with the above mentioned different techniques, providing a mean bias and standard deviation of −0.30 ± 0.89 mm, 0.02 ± 0.68 mm, −0.57 ± 0.68 mm, and 0.33 ± 0.59 mm, with respect to the RS92, GNSS, FTIR and CIMEL-AERONET, respectively. According to the theoretical analysis, MB decreases when comparing values for PWV > 5 mm, leading to a PWV MB between −0.45 mm (EKO vs. FTIR), and 0.11 mm (EKO vs. CIMEL-AERONET). These results confirm that the EKO MS-711 spectroradiometer is precise enough to provide reliable PWV data on a routine basis and, as a result, can complement existing ground-based PWV observations. The implementation of PWV measurements in a spectroradiometer increases the capabilities of these types of instruments to simultaneously obtain key parameters used in certain applications such as monitoring solar power plants performance.


2012 ◽  
Vol 5 (5) ◽  
pp. 1031-1043 ◽  
Author(s):  
M. Laborde ◽  
P. Mertes ◽  
P. Zieger ◽  
J. Dommen ◽  
U. Baltensperger ◽  
...  

Abstract. Black carbon (BC) is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2), allows the measurement of the refractory BC (rBC) mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot. Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg) than rBC from diesel exhaust, however, at least part of this difference can be explained by incomplete removal of non-refractory components in the thermodenuder. The amount of remaining non-refractory matter was estimated to be below 30% by mass, according to a comparison of the scattering cross sections of the whole particles with that of the pure BC cores. The SP2 sensitivity to rBC from wood burning exhaust agrees with the SP2 sensitivity to rBC from diesel exhaust within an error of less than 14% (≤40 fg). If, due to experimental restrictions, diesel exhaust cannot be used, untreated fullerene soot was found to give an SP2 calibration curve similar to diesel exhaust and ambient rBC (within ±10% for a rBC mass ≤15 fg) and is therefore recommended although two different batches differed by ~14% between themselves. In addition, the SP2 was found to be up to 40% more sensitive to Aquadag® than to diesel exhaust rBC. Therefore Aquadag® cannot be recommended for atmospheric application without accounting for the sensitivity difference. These findings for fullerene soot and Aquadag® confirm results from previous literature.


2021 ◽  
Author(s):  
Erik H. Hoffmann ◽  
Andreas Tilgner ◽  
Simonas Kecorius ◽  
Hartmut Herrmann

<p>New particle formation (NPF) and early growth are efficient processes producing high concentrations of cloud condensation nuclei (CCNs) precursors in the Arctic marine boundary layer (AMBL). However, due to short lifetime and lack of condensable vapors, newly formed particles do often not grow beyond 50 nm and cause low CCN particle concentrations in the AMBL. Thus, even the smallest amount of Aitken mode particle growth is capable to significantly increase the CCN budget. However, the growth mechanism of Aitken-mode particles from NPF into CCN range in the Arctic is still rather unclear and was therefore investigated during the cruise campaign PASCAL in 2017.</p> <p>During PASCAL, aerosol particles measurements were performed and an unexpected rapid growth of Aitken mode particles was observed right after fog episodes. Combined field data analyses and detailed multiphase chemistry box model simulations with the CAPRAM mechanism were performed to study the underlying processes. Resulting, a new mechanism is proposed explaining how particles with d < 50 nm are able to grow into CCN size range in the Arctic without requiring high water vapor supersaturation (SS). The investigations demonstrated that the rapid post-fog particle growth of Aitken mode is related to chemical processes within the Arctic fog. The redistribution of semi-volatile acidic (e.g., methanesulfonic acid) and basic (e.g., ammonia) compounds from processed CCN-active particles to smaller CCN-inactive particles can cause a rapid particle growth of Aitken mode particles after fog evaporation enabling them to grow towards CCN size. Comparisons of the model results with Berner impactor measurements supports the proposed growth mechanism.</p> <p>Overall, this study provided new insights on how the increasing frequency of NPF and fog-related particle processing can increase in the number of CCNs and cloud droplets leading to an increased albedo of Arctic clouds and thus affect the radiative balance in the Arctic. Since fogs will occur more frequently in the Arctic as a result of climate change, this growth mechanism and a deeper knowledge on its feedbacks can be essential to understand Arctic warming.</p>


1991 ◽  
Vol 43 (4) ◽  
pp. 152-163 ◽  
Author(s):  
R.J. Charlson ◽  
J. Langner ◽  
H. Rodhe ◽  
C.B. Leovy ◽  
S.G. Warren

2009 ◽  
Vol 9 (12) ◽  
pp. 4185-4196 ◽  
Author(s):  
A. Devasthale ◽  
H. Grassl

Abstract. A daytime climatological spatio-temporal distribution of high opaque ice cloud (HOIC) classes over the Indian subcontinent (0–40° N, 60° E–100° E) is presented using 25-year data from the Advanced Very High Resolution Radiometers (AVHRRs) for the summer monsoon months. The HOICs are important for regional radiative balance, precipitation and troposphere-stratosphere exchange. In this study, HOICs are sub-divided into three classes based on their cloud top brightness temperatures (BT). Class I represents very deep convection (BT<220 K). Class II represents deep convection (220 K


2016 ◽  
Vol 16 (12) ◽  
pp. 7663-7679 ◽  
Author(s):  
Megan D. Willis ◽  
Julia Burkart ◽  
Jennie L. Thomas ◽  
Franziska Köllner ◽  
Johannes Schneider ◽  
...  

Abstract. The summertime Arctic lower troposphere is a relatively pristine background aerosol environment dominated by nucleation and Aitken mode particles. Understanding the mechanisms that control the formation and growth of aerosol is crucial for our ability to predict cloud properties and therefore radiative balance and climate. We present an analysis of an aerosol growth event observed in the Canadian Arctic Archipelago during summer as part of the NETCARE project. Under stable and clean atmospheric conditions, with low inversion heights, carbon monoxide less than 80 ppbv, and black carbon less than 5 ng m−3, we observe growth of small particles,  <  20 nm in diameter, into sizes above 50 nm. Aerosol growth was correlated with the presence of organic species, trimethylamine, and methanesulfonic acid (MSA) in particles ∼ 80 nm and larger, where the organics are similar to those previously observed in marine settings. MSA-to-sulfate ratios as high as 0.15 were observed during aerosol growth, suggesting an important marine influence. The organic-rich aerosol contributes significantly to particles active as cloud condensation nuclei (CCN, supersaturation  =  0.6 %), which are elevated in concentration during aerosol growth above background levels of ∼ 100 to ∼ 220 cm−3. Results from this case study highlight the potential importance of secondary organic aerosol formation and its role in growing nucleation mode aerosol into CCN-active sizes in this remote marine environment.


2017 ◽  
Author(s):  
Sophie L. Haslett ◽  
J. Chris Thomas ◽  
William T. Morgan ◽  
Rory Hadden ◽  
Dantong Liu ◽  
...  

Abstract. Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously-reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver greater constraints on variability of particulate emissions in atmospheric systems.


2018 ◽  
Author(s):  
Tao Tang ◽  
Drew Shindell ◽  
Bjørn H. Samset ◽  
Oliviér Boucher ◽  
Piers M. Forster ◽  
...  

Abstract. Atmospheric aerosols and greenhouse gases affect cloud properties, radiative balance and thus, the hydrological cycle. Observations show that precipitation has decreased in the Mediterranean since the 20th century, and many studies have investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare Mediterranean precipitation responses to individual forcing agents in a set of state-of-the-art global climate models (GCMs). Our analyses show that both greenhouse gases and aerosols can cause drying in the Mediterranean, and that precipitation is more sensitive to black carbon (BC) forcing than to well-mixed greenhouse gases (WMGHGs) or sulfate aerosol. In addition to local heating, BC appears to reduce precipitation by causing an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. WMGHGs cause a similar SLP change, and both are associated with a northward diversion of the jet stream and storm tracks, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. Though the applied forcings were much larger, if forcings are scaled to those of the historical period of 1901–2010, roughly one-third (31 ± 17 %) of the precipitation decrease would be attributable to global BC forcing with the remainder largely attributable to WMGHGs whereas global scattering sulfate aerosols have negligible impacts. The results from this study suggest that future BC emissions may significantly affect regional water resources, agricultural practices, ecosystems, and the economy in the Mediterranean region.


2007 ◽  
Vol 7 (2) ◽  
pp. 4657-4672 ◽  
Author(s):  
A. J. Prata ◽  
S. A. Carn ◽  
A. Stohl ◽  
J. Kerkmann

Abstract. Volcanic eruptions emit gases, ash particles and hydrometeors into the atmosphere, occasionally reaching great heights to reside in the stratospheric overworld where they affect the radiative balance of the atmosphere and the earth's climate. Here we use satellite measurements and a Lagrangian particle dispersion model to determine the mass loadings, vertical penetration, horizontal extent, dispersion and transport of volcanic gases and particles in the stratosphere from the volcanic cloud emitted during the 20 May 2006 eruption of Soufriere Hills volcano, Montserrat, West Indies. Infrared, ultraviolet and microwave radiation measurements from two polar orbiters are used to quantify the gases and particles, and track the movement of the cloud for 23 days, over a distance of ~18 000 km. Approximately, 0.1±0.01 Tg(S) was injected into the stratosphere in the form of SO2: the largest single sulfur input to the stratosphere in 2006. Microwave Limb Sounder measurements indicate an enhanced mass of HCl of ~0.003–0.01 Tg. Geosynchronous satellite data reveal the rapid nature of the stratospheric injection and indicate that the eruption cloud contained ~2 Tg of ice, with very little ash reaching the stratosphere. These new satellite measurements of volcanic gases and particles can be used to test the sensitivity of climate to volcanic forcing and assess the impact of stratospheric sulfates on climate cooling.


Sign in / Sign up

Export Citation Format

Share Document