scholarly journals Assessing the quality of mobile graphical user interfaces using multi-objective optimization

2019 ◽  
Vol 24 (10) ◽  
pp. 7685-7714 ◽  
Author(s):  
Makram Soui ◽  
Mabrouka Chouchane ◽  
Mohamed Wiem Mkaouer ◽  
Marouane Kessentini ◽  
Khaled Ghedira
2020 ◽  
Vol 40 (4) ◽  
pp. 360-371
Author(s):  
Yanli Cao ◽  
Xiying Fan ◽  
Yonghuan Guo ◽  
Sai Li ◽  
Haiyue Huang

AbstractThe qualities of injection-molded parts are affected by process parameters. Warpage and volume shrinkage are two typical defects. Moreover, insufficient or excessively large clamping force also affects the quality of parts and the cost of the process. An experiment based on the orthogonal design was conducted to minimize the above defects. Moldflow software was used to simulate the injection process of each experiment. The entropy weight was used to determine the weight of each index, the comprehensive evaluation value was calculated, and multi-objective optimization was transformed into single-objective optimization. A regression model was established by the random forest (RF) algorithm. To further illustrate the reliability and accuracy of the model, back-propagation neural network and kriging models were taken as comparative algorithms. The results showed that the error of RF was the smallest and its performance was the best. Finally, genetic algorithm was used to search for the minimum of the regression model established by RF. The optimal parameters were found to improve the quality of plastic parts and reduce the energy consumption. The plastic parts manufactured by the optimal process parameters showed good quality and met the requirements of production.


2021 ◽  
pp. 1-21
Author(s):  
Xin Li ◽  
Xiaoli Li ◽  
Kang Wang

The key characteristic of multi-objective evolutionary algorithm is that it can find a good approximate multi-objective optimal solution set when solving multi-objective optimization problems(MOPs). However, most multi-objective evolutionary algorithms perform well on regular multi-objective optimization problems, but their performance on irregular fronts deteriorates. In order to remedy this issue, this paper studies the existing algorithms and proposes a multi-objective evolutionary based on niche selection to deal with irregular Pareto fronts. In this paper, the crowding degree is calculated by the niche method in the process of selecting parents when the non-dominated solutions converge to the first front, which improves the the quality of offspring solutions and which is beneficial to local search. In addition, niche selection is adopted into the process of environmental selection through considering the number and the location of the individuals in its niche radius, which improve the diversity of population. Finally, experimental results on 23 benchmark problems including MaF and IMOP show that the proposed algorithm exhibits better performance than the compared MOEAs.


2020 ◽  
Author(s):  
Tomohiro Harada ◽  
Misaki Kaidan ◽  
Ruck Thawonmas

Abstract This paper investigates the integration of a surrogate-assisted multi-objective evolutionary algorithm (MOEA) and a parallel computation scheme to reduce the computing time until obtaining the optimal solutions in evolutionary algorithms (EAs). A surrogate-assisted MOEA solves multi-objective optimization problems while estimating the evaluation of solutions with a surrogate function. A surrogate function is produced by a machine learning model. This paper uses an extreme learning surrogate-assisted MOEA/D (ELMOEA/D), which utilizes one of the well-known MOEA algorithms, MOEA/D, and a machine learning technique, extreme learning machine (ELM). A parallelization of MOEA, on the other hand, evaluates solutions in parallel on multiple computing nodes to accelerate the optimization process. We consider a synchronous and an asynchronous parallel MOEA as a master-slave parallelization scheme for ELMOEA/D. We carry out an experiment with multi-objective optimization problems to compare the synchronous parallel ELMOEA/D with the asynchronous parallel ELMOEA/D. In the experiment, we simulate two settings of the evaluation time of solutions. One determines the evaluation time of solutions by the normal distribution with different variances. On the other hand, another evaluation time correlates to the objective function value. We compare the quality of solutions obtained by the parallel ELMOEA/D variants within a particular computing time. The experimental results show that the parallelization of ELMOEA/D significantly reduces the computational time. In addition, the integration of ELMOEA/D with the asynchronous parallelization scheme obtains higher quality of solutions quicker than the synchronous parallel ELMOEA/D.


2021 ◽  
Vol 12 (4) ◽  
pp. 125-145
Author(s):  
Wafa Aouadj ◽  
Mohamed-Rida Abdessemed ◽  
Rachid Seghir

This study concerns a swarm of autonomous reactive mobile robots, qualified of naïve because of their simple constitution, having the mission of gathering objects randomly distributed while respecting two contradictory objectives: maximizing quality of the emergent heap-formation and minimizing energy consumed by aforesaid robots. This problem poses two challenges: it is a multi-objective optimization problem and it is a hard problem. To solve it, one of renowned multi-objective evolutionary algorithms is used. Obtained solution, via a simulation process, unveils a close relationship between behavioral-rules and consumed energy; it represents the sought behavioral model, optimizing the grouping quality and energy consumption. Its reliability is shown by evaluating its robustness, scalability, and flexibility. Also, it is compared with a single-objective behavioral model. Results' analysis proves its high robustness, its superiority in terms of scalability and flexibility, and its longevity measured based on the activity time of the robotic system that it integrates.


2014 ◽  
Vol 1049-1050 ◽  
pp. 884-887
Author(s):  
Qin Man Fan ◽  
Yong Hai Wu

The design and quality of steering mechanism is directly related to forklift traction, mobility, steering stability and safe operation. A multi-objective optimization model of the forklift steering mechanism is established in this paper. The objective function is minimum oil cylinder stroke difference and the minimum power oil pump. Steering torque, geometrical angles, geometry size and the hydraulic system pressure are used as constraint conditions. We use non dominated sorting genetic algorithm (NSGA II) based on the Pareto optimal concept to optimize and calculate model and get the optimal design of steering mechanism.


2003 ◽  
Vol 125 (4) ◽  
pp. 655-663 ◽  
Author(s):  
Ali Farhang-Mehr ◽  
Shapour Azarm

An entropy-based metric is presented that can be used for assessing the quality of a solution set as obtained from multi-objective optimization techniques. This metric quantifies the “goodness” of a set of solutions in terms of distribution quality over the Pareto frontier. The metric can be used to compare the performance of different multi-objective optimization techniques. In particular, the metric can be used in analysis of multi-objective evolutionary algorithms, wherein the capabilities of such techniques to produce and maintain diversity among different solution points are desired to be compared on a quantitative basis. An engineering test example, the multi-objective design optimization of a speed-reducer, is provided to demonstrate an application of the proposed entropy metric.


2021 ◽  
Vol 26 (2) ◽  
pp. 28
Author(s):  
Mercedes Perez-Villafuerte ◽  
Laura Cruz-Reyes ◽  
Nelson Rangel-Valdez ◽  
Claudia Gomez-Santillan ◽  
Héctor Fraire-Huacuja

Many real-world optimization problems involving several conflicting objective functions frequently appear in current scenarios and it is expected they will remain present in the future. However, approaches combining multi-objective optimization with the incorporation of the decision maker’s (DM’s) preferences through multi-criteria ordinal classification are still scarce. In addition, preferences are rarely associated with a DM’s characteristics; the preference selection is arbitrary. This paper proposes a new hybrid multi-objective optimization algorithm called P-HMCSGA (preference hybrid multi-criteria sorting genetic algorithm) that allows the DM’s preferences to be incorporated in the optimization process’ early phases and updated into the search process. P-HMCSGA incorporates preferences using a multi-criteria ordinal classification to distinguish solutions as good and bad; its parameters are determined with a preference disaggregation method. The main feature of P-HMCSGA is the new method proposed to associate preferences with the characterization profile of a DM and its integration with ordinal classification. This increases the selective pressure towards the desired region of interest more in agreement with the DM’s preferences specified in realistic profiles. The method is illustrated by solving real-size multi-objective PPPs (project portfolio problem). The experimentation aims to answer three questions: (i) To what extent does allowing the DM to express their preferences through a characterization profile impact the quality of the solution obtained in the optimization? (ii) How sensible is the proposal to different profiles? (iii) How much does the level of robustness of a profile impact the quality of final solutions (this question is related with the knowledge level that a DM has about his/her preferences)? Concluding, the proposal fulfills several desirable characteristics of a preferences incorporation method concerning these questions.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012076
Author(s):  
Y Sineshchuk ◽  
S Terekhin ◽  
I Saenko ◽  
I Kotenko

Abstract The paper discusses the problem of poor quality of graphical user interfaces used for various software products. The provided analysis shows that modern software has poor-quality interfaces, and there are no flexible programs for evaluating such interfaces. The paper highlights and describes the characteristics that are used to assess the quality of interfaces, such as operator speed, error rates, skill retention, and subjective satisfaction. A formalized approach to assess the speed of searching for information and functional objects is proposed. It is based on such characteristics as the time of fixation of the gaze, movement of the eye, the volume of a person’s operative memory, the zone of clear vision, the path of the user’s gaze information search. An algorithm for estimating the speed of searching for information and functional elements is proposed. This algorithm can be implemented and used for further design of a software application based on it. The algorithm makes it possible to automatically evaluate both a particular interface and to compare the interfaces of different programs.


Author(s):  
Aleksey V. Vostrykh ◽  
◽  
Tatyana I. Davydova ◽  
Yuriy I. Sineshchuk ◽  
Sergey N. Teryokhin ◽  
...  

The article deals with the problem of the quality of graphical user interfaces used for various software products. The indicators for evaluating the quality of interfaces are analyzed. A formalized approach to evaluating the speed of information search and functional objects is formulated. An algorithm for evaluating the speed of information search and functional elements is proposed, which allows automating the process of evaluating and comparative analysis of interfaces of various programs.


Sign in / Sign up

Export Citation Format

Share Document