The Lago Enriquillo fringing reef (Dominican Republic): a unique window into Holocene coral reef ecosystems of the Caribbean Sea

2013 ◽  
Vol 102 (3) ◽  
pp. 781-782 ◽  
Author(s):  
M. Reuter ◽  
A. Böcker ◽  
H. Lohmann ◽  
T. C. Brachert
PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3733 ◽  
Author(s):  
Elizabeth J. Connors

Coral reef ecosystems of the South Pacific are extremely vulnerable to plastic pollution from oceanic gyres and land-based sources. To describe the extent and impact of plastic pollution, the distribution of both macro- (>5 mm) and microplastic (plastic < 5 mm) of the fringing reef of an isolated South Pacific island, Mo’orea, French Polynesia was quantified. Macroplastic was found on every beach on the island that was surveyed. The distribution of this plastic was categorized by site type and by the presence of Turbinaria ornata, a common macroalgae on Mo’orea. Microplastics were discovered in the water column of the fringing reef of the island, at a concentration of 0.74 pieces m−2. Additionally, this study reports for the first time the ingestion of microplastic by the corallimorpha Discosoma nummiforme. Microplastics were made available to corallimorph polyps in a laboratory setting over the course of 108 h. Positively and negatively buoyant microplastics were ingested, and a microplastic particle that was not experimentally introduced was also discovered in the stomach cavity of one organism. This study indicates that plastic pollution has the potential to negatively impact coral reef ecosystems of the South Pacific, and warrants further study to explore the broader potential impacts of plastic pollution on coral reef ecosystems.


2018 ◽  
Author(s):  
Abigail Moore ◽  
Samliok Ndobe ◽  
Jamaluddin Jompa

Coral reef ecosystems worldwide are experiencing increasingly frequent episodes of temperature-related “coral bleaching”. The Banggai Archipelago in Central Sulawesi, Indonesia, has extensive coral reefs and is home to the endemic Banggai cardinalfish, Pterapogon kauderni, a species listed as Endangered in the IUCN red List. A rapid survey was undertaken at seven sites (1.2°S-2°S) in this archipelago, in response to the national call for action during the 2016 global bleaching event. The CoralWatch method (6 point colour scale: CW1-CW6) was used; colony life-form (Global Coral Reef Monitoring Network categories) and genus (Indo-Pacific Coral-finder) were recorded. Partial and full bleaching were observed at all sites; of 1166 colonies, 64.7% were fully bleached (CW1) or very pale (CW2); with 13.5% in CW4-CW6. Water temperatures were 1-3°C above recorded maxima from 2004-2012. Branching and encrusting life-forms had the highest full/severe bleaching rates. Common genera with above average bleaching rates included Stylophora, Seriatopora, Pocillopora, Isopora, Merulina, Galaxea, some forms of Acropora and Porites. Algal overgrowth was observed on both live (fully/partially) bleached and dead colonies. Densities of Diadema sp. urchins, a key simbiont of the Banggai cardinalfish, until recently the most abundant coral reef herbivore, were extremely low (orders of magnitude less than 2004 densities), with few adult individuals present at 5/7 sites. The Caribbean experience underlines the urgency of addressing the unregulated Diadema fishery which has developed in the Banggai Archipelago since around 2007. Rehabilitating populations of this key invertebrate herbivore would contribute to biodiversity conservation and reef resilience/recovery in this equatorial archipelago.


2021 ◽  
Author(s):  
Colleen B Bove ◽  
Laura Mudge ◽  
John F Bruno

Anthropogenic climate change is rapidly altering the characteristics and dynamics of biological communities. This is especially apparent in marine systems as the world's oceans are warming at an unprecedented rate, causing dramatic changes to coastal marine systems, especially on coral reefs of the Caribbean. We used three complementary ocean temperature databases (HadISST, Pathfinder, and OISST) to quantify change in thermal characteristics of Caribbean coral reefs over the last 150 years (1871-2020). These sea surface temperature (SST) databases included combined in situ and satellite-derived SST (HadISST, OISST), as well as satellite-only observations (Pathfinder) at multiple spatial resolutions. We also compiled a Caribbean coral reef database identifying 5,326 unique reefs across the region. We found that Caribbean reefs have warmed on average by 0.20 °C per decade since 1987, the calculated year that rapid warming began on Caribbean reefs. Further, geographic variation in warming rates ranged from 0.17 °C per decade on Bahamian reefs to 0.26 °C per decade on reefs within the Southern and Eastern Caribbean ecoregions. If this linear rate of warming continues, these already threatened ecosystems would warm by an additional 1.6 °C on average by 2100. We also found that marine heatwave (MHW) events are increasing in both frequency and duration across the Caribbean. Caribbean coral reefs now experience on average 5 MHW events annually, compared to 1 per year in the early 1980s. Combined, these changes have caused a dramatic shift in the composition and function of Caribbean coral reef ecosystems. If reefs continue to warm at this rate, we are likely to lose even the remnant Caribbean coral reef communities of today in the coming decades.


PLoS ONE ◽  
2016 ◽  
Vol 11 (11) ◽  
pp. e0167252 ◽  
Author(s):  
Leopoldo Díaz-Pérez ◽  
Fabián Alejandro Rodríguez-Zaragoza ◽  
Marco Ortiz ◽  
Amílcar Leví Cupul-Magaña ◽  
Jose D. Carriquiry ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161812 ◽  
Author(s):  
Leopoldo Díaz-Pérez ◽  
Fabián Alejandro Rodríguez-Zaragoza ◽  
Marco Ortiz ◽  
Amílcar Leví Cupul-Magaña ◽  
Jose D. Carriquiry ◽  
...  

2015 ◽  
Vol 54 (5) ◽  
pp. 933-943
Author(s):  
Mark R. Jury

AbstractThis study considers tropical cyclones Irene in Puerto Rico from 2011 and Isaac in the Dominican Republic from 2012. Impacts trailed more than a day after the storm in both cases. Irene passed Puerto Rico on 22 August 2011, yet bands of heavy rainfall caused floods and disruption on 23 August. In the second case, Isaac passed Hispaniola on 24 August 2012, but stormy weather continued on 25 August. Onshore winds, 4-m waves, and associated tides and river outflow closed the harbor of Santo Domingo. Emergency managers and maritime operators should be aware of the delayed impacts of tropical cyclones in the Caribbean Sea region.


2014 ◽  
Vol 186 (7) ◽  
pp. 4181-4193 ◽  
Author(s):  
Yuji Sakuno ◽  
Esteban R. Miño ◽  
Satoshi Nakai ◽  
Hidemi Mutsuda ◽  
Tetsuji Okuda ◽  
...  

2014 ◽  
Vol 29 (6) ◽  
pp. 508-517 ◽  
Author(s):  
Alberto M. Mestas‐Nuñez ◽  
Peter Molnar
Keyword(s):  
Ice Age ◽  

2021 ◽  
Vol 13 (10) ◽  
pp. 1939
Author(s):  
Tao Xian ◽  
Gaopeng Lu ◽  
Hongbo Zhang ◽  
Yongping Wang ◽  
Shaolin Xiong ◽  
...  

The thermal structure of the environmental atmosphere associated with Terrestrial Gamma-ray Flashes (TGFs) is investigated with the combined observations from several detectors (FERMI, RHESSI, and Insight-HXMT) and GNSS-RO (SAC-C, COSMIC, GRACE, TerraSAR-X, and MetOp-A). The geographic distributions of TGF-related tropopause altitude and climatology are similar. The regional TGF-related tropopause altitude in Africa and the Caribbean Sea is 0.1–0.4 km lower than the climatology, whereas that in Asia is 0.1–0.2 km higher. Most of the TGF-related tropopause altitudes are slightly higher than the climatology, while some of them have a slightly negative bias. The subtropical TGF-producing thunderstorms are warmer in the troposphere and have a colder and higher tropopause over land than the ocean. There is no significant land–ocean difference in the thermal structure for the tropical TGF-producing thunderstorms. The TGF-producing thunderstorms have a cold anomaly in the middle and upper troposphere and have stronger anomalies than the deep convection found in previous studies.


Sign in / Sign up

Export Citation Format

Share Document