Mapping the mean annual precipitation of China using local interpolation techniques

2014 ◽  
Vol 119 (1-2) ◽  
pp. 171-180 ◽  
Author(s):  
Wei Sun ◽  
Yunqiang Zhu ◽  
Shengli Huang ◽  
Chunxia Guo
2021 ◽  
Author(s):  
Alexandru Antal ◽  
Pedro M. P. Guerreiro ◽  
Sorin Cheval

Abstract Precipitation has a strong and constant impact on different economic sectors, environment, and social activities all over the world. An increasing interest for monitoring and estimating the precipitation characteristics can be claimed in the last decades. However, in some areas the ground-based network is still sparse and the spatial data coverage insufficiently addresses the needs. In the last decades, different interpolation methods provide an efficient response for describing the spatial distribution of precipitation. In this study, we compare the performance of seven interpolation methods used for retrieving the mean annual precipitation over the mainland Portugal, as follows: local polynomial interpolation (LPI), global polynomial interpolation (GPI), radial basis function (RBF), inverse distance weighted (IDW), ordinary cokriging (OCK), universal cokriging (UCK) and empirical Bayesian kriging regression (EBKR). We generate the mean annual precipitation distribution using data from 128 rain gauge stations covering the period 1991 to 2000. The interpolation results were evaluated using cross-validation techniques and the performance of each method was evaluated using mean error (ME), mean absolute error (MAE), root mean square error (RMSE), Pearson’s correlation coefficient (R) and Taylor diagram. The results indicate that EBKR performs the best spatial distribution. In order to determine the accuracy of spatial distribution generated by the spatial interpolation methods, we calculate the prediction standard error (PSE). The PSE result of EBKR prediction over mainland Portugal increases form south to north.


1991 ◽  
Vol 37 (125) ◽  
pp. 140-148 ◽  
Author(s):  
Atsumu Ohmura ◽  
Niels Reeh

Abstract Annual total precipitation and the annual accumulation on the Greenland ice sheet are evaluated and presented in two maps. The maps are based on accumulation measurements of 251 pits and cores obtained from the upper accumulation zone and precipitation measurements made at 35 meteorological stations in the coastal region. To construct the accumulation map, the annual precipitation was split into solid and liquid precipitation components. Annual total precipitation exceeding 2500mmw.e. occurs on the southeastern tip of Greenland, while the minimum precipitation is estimated to occur on the northeastern slope of the ice sheet. The mean annual precipitation for all of Greenland is 340 mm w.e. The largest annual accumulation of about 1500 mm w.e. is found on the glaciers in the southeastern corner of Greenland, while the smallest accumulation is found on the northeastern slope of the ice sheet west of Danmarkshavn. The mean accumulation on the Greenland ice sheet is estimated at 310mmw.e. The regional difference in accumulation is examined with respect to the 850hPa(mbar) level circulation. The present surface topography is found to play an important role in determining regional accumulation on the ice sheet.


2020 ◽  
Vol 47 (2) ◽  
pp. 418
Author(s):  
Juan M. Robledo ◽  
Maricel Y. Horn ◽  
Claudia I. Galli ◽  
Luisa M. Anzótegui

The continental sedimentary rocks that constitute the Palo Pintado Formation of the late Miocene from Salta province, presents a great paleoclimatic interest due to the environmental conditions prevailing during this geochronologic interval. The geological and paleobotanical data suggest that during the sedimentary rocks accumulation of the Palo Pintado Formation (Angastaco Basin), wetter conditions would have existed comparing with other nearby and contemporary Formations, for example the Playa del Zorro Aloformation (late Miocene of Catamarca) and the Chiquimil (late Miocene of Tucumán), Salicas and the Toro Negro Formations (both from the late Miocene of La Rioja). In this study, the margin and the foliar area of the leaves contained on rocks from the Palo Pintado Formation are analyzed, in order to obtain the mean annual temperature (MAT) and the mean annual precipitation (MAP). The resulting values were: 23.98 °C and 330.8 mm. These results are coincident by the interpretation of different authors, who consider that the Palo Pintado Formation would have been deposited under a relatively humid environment, possibly as a consequence of the rains that affected locally the Angastaco basin región.


1979 ◽  
Vol 69 (1) ◽  
pp. 87-91 ◽  
Author(s):  
S. C. Rawlins

AbstractA study was made of the seasonal variation in population density of larvae of Boophilus microplus (Can.) in four locations in Jamaican pastures where the mean annual precipitation ranged from 59 to 222 cm. Variations in population density were related to rainfall. Generally, four months of heavy rains in August to November preceded significant increases in B. microplus populations in December to February. This was followed by a reduction then another slight increase, resulting in a bimodal pattern of activity. Although populations fell to very low levels by the end of the dry season, only in one focus were they depleted to undetectable levels.


1991 ◽  
Vol 37 (125) ◽  
pp. 140-148 ◽  
Author(s):  
Atsumu Ohmura ◽  
Niels Reeh

AbstractAnnual total precipitation and the annual accumulation on the Greenland ice sheet are evaluated and presented in two maps. The maps are based on accumulation measurements of 251 pits and cores obtained from the upper accumulation zone and precipitation measurements made at 35 meteorological stations in the coastal region. To construct the accumulation map, the annual precipitation was split into solid and liquid precipitation components. Annual total precipitation exceeding 2500mmw.e. occurs on the southeastern tip of Greenland, while the minimum precipitation is estimated to occur on the northeastern slope of the ice sheet. The mean annual precipitation for all of Greenland is 340 mm w.e. The largest annual accumulation of about 1500 mm w.e. is found on the glaciers in the southeastern corner of Greenland, while the smallest accumulation is found on the northeastern slope of the ice sheet west of Danmarkshavn. The mean accumulation on the Greenland ice sheet is estimated at 310mmw.e. The regional difference in accumulation is examined with respect to the 850hPa(mbar) level circulation. The present surface topography is found to play an important role in determining regional accumulation on the ice sheet.


2020 ◽  
Author(s):  
Haiyun Shi ◽  
Suning Liu

<p>This study develops a recursive approach to long-term prediction of monthly precipitation using genetic programming (GP), and the study area is the Three-River Headwaters Region (TRHR) in China. The daily precipitation data recorded at 29 meteorological stations during 1961-2014 are collected, among which the data during 1961-2000 are used for calibration and the remaining data are for validation. To develop this approach, first, the preliminary estimations of annual precipitation are computed based on a statistical method. Second, the percentage of the monthly precipitation for each month of a year is calculated as the mean monthly precipitation divided by the mean annual precipitation during the study period, and then the preliminary estimation of monthly precipitation for each month of a year is obtained. Third, GP is adopted to improve the preliminary estimations through establishing the relationship of the observations with the preliminary estimations at the past and current times. The calibration and validation results reveal that the recursive approach involving GP can provide the more accurate predictions of monthly precipitation. Finally, this approach is used to predict the monthly precipitation over the TRHR till 2050.</p>


2018 ◽  
Author(s):  
Jiguang Feng ◽  
Jingsheng Wang ◽  
Yanjun Song ◽  
Biao Zhu

Abstract. Soil respiration (Rs), a key process in the terrestrial carbon cycle, is very sensitive to climate change. In this study, we synthesized 54 measurements of annual Rs and 171 estimates of Q10 value (the temperature sensitivity of soil respiration) in grasslands across China. We quantitatively analyzed their spatial patterns and controlling factors in five grassland types, including temperate typical steppe, temperate meadow steppe, temperate desert steppe, alpine grassland, and warm-tropical grassland. Results showed that the mean (± SE) annual Rs was 582.0 ± 57.9 g C m−2 yr−1 across Chinese grasslands. Annual Rs significantly differed among grassland types, and positively correlated with mean annual temperature, mean annual precipitation, soil organic carbon content and aboveground biomass, but negatively correlated with latitude and soil pH (P < 0.05). Among these factors, mean annual precipitation was the primary factor controlling the spatial variation of annual Rs in Chinese grasslands. The mean contributions of growing season Rs and heterotrophic respiration to annual Rs were 78.7 % and 72.8 %, respectively. Moreover, the mean (± SE) of Q10 across Chinese grasslands was 2.60 ± 0.08, ranging from 1.03 to 8.13, and varied largely within and among grassland types, and among soil temperature measurement depths. Generally, the seasonal variation of soil respiration in Chinese grasslands cannot be well explained by soil temperature using the van't Hoff equation. Longitude and altitude were the dominant driving factors and accounted for 26.0 % of the variation in Q10 derived by soil temperature at the depth of 5 cm. Overall, our findings advance our understanding of the spatial variation and environmental control of soil respiration and Q10 across Chinese grasslands, and also improve our ability to predict soil carbon efflux under climate change on the regional scale.


2010 ◽  
Vol 25 ◽  
pp. 119-125 ◽  
Author(s):  
S. Javanmard ◽  
A. Yatagai ◽  
M. I. Nodzu ◽  
J. BodaghJamali ◽  
H. Kawamoto

Abstract. To evaluate satellite rainfall estimates of Tropical Rain Measurement Mission (TRMM) level 3 output (3B42) (TRMM_3B42) over Iran (20°–45° N, 40°–65° E), we compared these data with high-resolution gridded precipitation datasets (0.25°×0.25° latitude/longitude) based on rain gauges (Iran Synoptic gauges Version 0902 (IS0902)). Spatial distribution of mean annual and mean seasonal rainfall in both IS0902 and TRMM_3B42 from 1998 to 2006 shows two main rainfall patterns along the Caspian Sea and over the Zagros Mountains. Scatter plots of annual average rainfall from IS0902 versus TRMM_3B42 for each 0.25°×0.25° grid cell over the entire country (25°–40° N, 45°–60° E), along the Caspian Sea (35°–40° N, 48°–56° E), and over the Zagros Mountains (28°–37° N, 46°–55° E) were derived. For the entire country, the Caspian Sea region, and the Zagros Mountains, TRMM_3B42 underestimates mean annual precipitation by 0.17, 0.39, and 0.15 mm day−1, respectively, and the mean annual rainfall spatial correlation coefficients are 0.77, 0.57, and 0.75, respectively. The mean annual precipitation temporal correlation coefficient for IS0902 and TRMM_3B42 is ~0.8 in the area along the Zagros Mountains, and ~0.6 in the Caspian Sea and desert regions.


Sign in / Sign up

Export Citation Format

Share Document