scholarly journals Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran

2010 ◽  
Vol 25 ◽  
pp. 119-125 ◽  
Author(s):  
S. Javanmard ◽  
A. Yatagai ◽  
M. I. Nodzu ◽  
J. BodaghJamali ◽  
H. Kawamoto

Abstract. To evaluate satellite rainfall estimates of Tropical Rain Measurement Mission (TRMM) level 3 output (3B42) (TRMM_3B42) over Iran (20°–45° N, 40°–65° E), we compared these data with high-resolution gridded precipitation datasets (0.25°×0.25° latitude/longitude) based on rain gauges (Iran Synoptic gauges Version 0902 (IS0902)). Spatial distribution of mean annual and mean seasonal rainfall in both IS0902 and TRMM_3B42 from 1998 to 2006 shows two main rainfall patterns along the Caspian Sea and over the Zagros Mountains. Scatter plots of annual average rainfall from IS0902 versus TRMM_3B42 for each 0.25°×0.25° grid cell over the entire country (25°–40° N, 45°–60° E), along the Caspian Sea (35°–40° N, 48°–56° E), and over the Zagros Mountains (28°–37° N, 46°–55° E) were derived. For the entire country, the Caspian Sea region, and the Zagros Mountains, TRMM_3B42 underestimates mean annual precipitation by 0.17, 0.39, and 0.15 mm day−1, respectively, and the mean annual rainfall spatial correlation coefficients are 0.77, 0.57, and 0.75, respectively. The mean annual precipitation temporal correlation coefficient for IS0902 and TRMM_3B42 is ~0.8 in the area along the Zagros Mountains, and ~0.6 in the Caspian Sea and desert regions.

2021 ◽  
Author(s):  
Alisa Medvedeva ◽  
Igor Medvedev

<p>A regional model of tsunami seismic sources in the zone of the Main Caucasian thrust has been developed. The parameters of probable models of seismic sources and their uncertainties were estimated based on the available data on historical earthquakes and active faults of the region. The scenario modeling technique was used for the tsunami zoning of the Caspian Sea coast. The time period covered by the model catalog of earthquakes used to calculate the generation and propagation of tsunamis is about 20 000 years, which is longer than the recurrence periods of the strongest possible earthquakes. The recurrence graphs of the calculated maximum tsunami heights for the entire sea coast were plotted. On their basis, the maximum heights of tsunami waves on the coast were calculated with recurrence periods of 250, 500, 1000 and 5000 years and the corresponding survey maps of the tsunami zoning of the Caspian Sea were created. The algorithm for calculating the tsunami run-up on the coast is improved, taking into account the residual (postseismic) displacements of the bottom and land relief. Estimates of tsunami hazard for the coast near the city of Kaspiysk were carried out: within the framework of the deterministic approach, the maximum wave heights and run-up distance were calculated. It is shown that the deterministic approach slightly overestimates the maximum heights of tsunami waves with certain return periods. It is shown that changes in the mean sea level can affect the features of the propagation of tsunami waves in the Caspian Sea. Thus, at an average sea level of -25-26 m, the Kara-Bogaz-Gol Bay is linked with the entire sea through a narrow strait. It leads to the propagation of tsunami waves into the water area of the bay and a decrease in wave height on the eastern coast of the sea. When the mean sea level decreases below -27 m, the positive depths in the strait disappear and water exchange through the strait stops, and the wave height in this part of the sea increases.</p>


2014 ◽  
Vol 15 (6) ◽  
pp. 2347-2369 ◽  
Author(s):  
Matthew P. Young ◽  
Charles J. R. Williams ◽  
J. Christine Chiu ◽  
Ross I. Maidment ◽  
Shu-Hua Chen

Abstract Tropical Applications of Meteorology Using Satellite and Ground-Based Observations (TAMSAT) rainfall estimates are used extensively across Africa for operational rainfall monitoring and food security applications; thus, regional evaluations of TAMSAT are essential to ensure its reliability. This study assesses the performance of TAMSAT rainfall estimates, along with the African Rainfall Climatology (ARC), version 2; the Tropical Rainfall Measuring Mission (TRMM) 3B42 product; and the Climate Prediction Center morphing technique (CMORPH), against a dense rain gauge network over a mountainous region of Ethiopia. Overall, TAMSAT exhibits good skill in detecting rainy events but underestimates rainfall amount, while ARC underestimates both rainfall amount and rainy event frequency. Meanwhile, TRMM consistently performs best in detecting rainy events and capturing the mean rainfall and seasonal variability, while CMORPH tends to overdetect rainy events. Moreover, the mean difference in daily rainfall between the products and rain gauges shows increasing underestimation with increasing elevation. However, the distribution in satellite–gauge differences demonstrates that although 75% of retrievals underestimate rainfall, up to 25% overestimate rainfall over all elevations. Case studies using high-resolution simulations suggest underestimation in the satellite algorithms is likely due to shallow convection with warm cloud-top temperatures in addition to beam-filling effects in microwave-based retrievals from localized convective cells. The overestimation by IR-based algorithms is attributed to nonraining cirrus with cold cloud-top temperatures. These results stress the importance of understanding regional precipitation systems causing uncertainties in satellite rainfall estimates with a view toward using this knowledge to improve rainfall algorithms.


2009 ◽  
Vol 5 (4) ◽  
pp. 585-606 ◽  
Author(s):  
A. Jost ◽  
S. Fauquette ◽  
M. Kageyama ◽  
G. Krinner ◽  
G. Ramstein ◽  
...  

Abstract. Here we perform a detailed comparison between climate model results and climate reconstructions in western Europe and the Mediterranean area for the mid-Piacenzian warm interval (ca 3 Myr ago) of the Late Pliocene epoch. This region is particularly well suited for such a comparison as several quantitative climate estimates from local pollen records are available. They show evidence for temperatures significantly warmer than today over the whole area, mean annual precipitation higher in northwestern Europe and equivalent to modern values in its southwestern part. To improve our comparison, we have performed high resolution simulations of the mid-Piacenzian climate using the LMDz atmospheric general circulation model (AGCM) with a stretched grid which allows a finer resolution over Europe. In a first step, we applied the PRISM2 (Pliocene Research, Interpretation, and Synoptic Mapping) boundary conditions except that we used modern terrestrial vegetation. Second, we simulated the vegetation for this period by forcing the ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) dynamic global vegetation model (DGVM) with the climatic outputs from the AGCM. We then supplied this simulated terrestrial vegetation cover as an additional boundary condition in a second AGCM run. This gives us the opportunity to investigate the model's sensitivity to the simulated vegetation changes in a global warming context. Model results and data show a great consistency for mean annual temperatures, indicating increases by up to 4°C in the study area, and some disparities, in particular in the northern Mediterranean sector, as regards winter and summer temperatures. Similar continental mean annual precipitation and moisture patterns are predicted by the model, which broadly underestimates the wetter conditions indicated by the data in northwestern Europe. The biogeophysical effects due to the changes in vegetation simulated by ORCHIDEE are weak, both in terms of the hydrological cycle and of the temperatures, at the regional scale of the European and Mediterranean mid-latitudes. In particular, they do not contribute to improve the model-data comparison. Their main influence concerns seasonal temperatures, with a decrease of the temperatures of the warmest month, and an overall reduction of the intensity of the continental hydrological cycle.


2012 ◽  
Vol 13 (1) ◽  
pp. 338-350 ◽  
Author(s):  
Menberu M. Bitew ◽  
Mekonnen Gebremichael ◽  
Lula T. Ghebremichael ◽  
Yared A. Bayissa

Abstract This study focuses on evaluating four widely used global high-resolution satellite rainfall products [the Climate Prediction Center’s morphing technique (CMORPH) product, the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) near-real-time product (3B42RT), the TMPA method post-real-time research version product (3B42), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) product] with a spatial resolution of 0.25° and temporal resolution of 3 h through their streamflow simulations in the Soil and Water Assessment Tool (SWAT) hydrologic model of a 299-km2 mountainous watershed in Ethiopia. Results show significant biases in the satellite rainfall estimates. The 3B42RT and CMORPH products perform better than the 3B42 and PERSIANN. The predictive ability of each of the satellite rainfall was examined using a SWAT model calibrated in two different approaches: with rain gauge rainfall as input, and with each of the satellite rainfall products as input. Significant improvements in model streamflow simulations are obtained when the model is calibrated with input-specific rainfall data than with rain gauge data. Calibrating SWAT with satellite rainfall estimates results in curve number values that are by far higher than the standard tabulated values, and therefore caution must be exercised when using standard tabulated parameter values with satellite rainfall inputs. The study also reveals that bias correction of satellite rainfall estimates significantly improves the model simulations. The best-performing model simulations based on satellite rainfall inputs are obtained after bias correction and model recalibration.


2021 ◽  
Author(s):  
Alexandru Antal ◽  
Pedro M. P. Guerreiro ◽  
Sorin Cheval

Abstract Precipitation has a strong and constant impact on different economic sectors, environment, and social activities all over the world. An increasing interest for monitoring and estimating the precipitation characteristics can be claimed in the last decades. However, in some areas the ground-based network is still sparse and the spatial data coverage insufficiently addresses the needs. In the last decades, different interpolation methods provide an efficient response for describing the spatial distribution of precipitation. In this study, we compare the performance of seven interpolation methods used for retrieving the mean annual precipitation over the mainland Portugal, as follows: local polynomial interpolation (LPI), global polynomial interpolation (GPI), radial basis function (RBF), inverse distance weighted (IDW), ordinary cokriging (OCK), universal cokriging (UCK) and empirical Bayesian kriging regression (EBKR). We generate the mean annual precipitation distribution using data from 128 rain gauge stations covering the period 1991 to 2000. The interpolation results were evaluated using cross-validation techniques and the performance of each method was evaluated using mean error (ME), mean absolute error (MAE), root mean square error (RMSE), Pearson’s correlation coefficient (R) and Taylor diagram. The results indicate that EBKR performs the best spatial distribution. In order to determine the accuracy of spatial distribution generated by the spatial interpolation methods, we calculate the prediction standard error (PSE). The PSE result of EBKR prediction over mainland Portugal increases form south to north.


1991 ◽  
Vol 37 (125) ◽  
pp. 140-148 ◽  
Author(s):  
Atsumu Ohmura ◽  
Niels Reeh

Abstract Annual total precipitation and the annual accumulation on the Greenland ice sheet are evaluated and presented in two maps. The maps are based on accumulation measurements of 251 pits and cores obtained from the upper accumulation zone and precipitation measurements made at 35 meteorological stations in the coastal region. To construct the accumulation map, the annual precipitation was split into solid and liquid precipitation components. Annual total precipitation exceeding 2500mmw.e. occurs on the southeastern tip of Greenland, while the minimum precipitation is estimated to occur on the northeastern slope of the ice sheet. The mean annual precipitation for all of Greenland is 340 mm w.e. The largest annual accumulation of about 1500 mm w.e. is found on the glaciers in the southeastern corner of Greenland, while the smallest accumulation is found on the northeastern slope of the ice sheet west of Danmarkshavn. The mean accumulation on the Greenland ice sheet is estimated at 310mmw.e. The regional difference in accumulation is examined with respect to the 850hPa(mbar) level circulation. The present surface topography is found to play an important role in determining regional accumulation on the ice sheet.


Author(s):  
Ahmed Jassim Mohammed, Riad Manadi Ramadan, Raed Muslim Shab

In this research, Calculation the Attenuation of X-ray radiation for low density polyethylene composites with oyster shells powder (extracted from the Caspian Sea in Iran), low density polyethylene production in the form of powder by the State Company for Petrochemical Industries (Basra-Iraq), the range of the added of oyster shells powder (extracted from the Caspian sea in Iran) has the values (0%, 2.5%, 5%, 10%, 15%, 20%, and 25%) for low density polyethylene weight and the added oyster shells powder with the particular size (≤ 250 μm). were investigated through several variables, such as, linear attenuation coefficient(μ) and mean free path(λ). The obtained results were appeared that the added oyster to reduce the spaces between the polymer chains, which reflects the high ability of the polymer as (10%-20%), and this increase will give further property that increase the attenuation x-ray of the prepared specimens. Where the practical study and the beam of intensity of energy (30 kv) and)VG.M = 600 voit(. The results showed that when increasing filler content, the total linear attenuation coefficient increases while the mean free path decreases. The mean free path (λ) at (2.5%) is (2.1 cm (, while at (20%) is (0.40 cm). The value of the linear attenuation coefficient (μ) at (20%) is)2.44 cm-1(, while at (2.5%) is) 0.49 cm-1(.


2020 ◽  
Vol 47 (2) ◽  
pp. 418
Author(s):  
Juan M. Robledo ◽  
Maricel Y. Horn ◽  
Claudia I. Galli ◽  
Luisa M. Anzótegui

The continental sedimentary rocks that constitute the Palo Pintado Formation of the late Miocene from Salta province, presents a great paleoclimatic interest due to the environmental conditions prevailing during this geochronologic interval. The geological and paleobotanical data suggest that during the sedimentary rocks accumulation of the Palo Pintado Formation (Angastaco Basin), wetter conditions would have existed comparing with other nearby and contemporary Formations, for example the Playa del Zorro Aloformation (late Miocene of Catamarca) and the Chiquimil (late Miocene of Tucumán), Salicas and the Toro Negro Formations (both from the late Miocene of La Rioja). In this study, the margin and the foliar area of the leaves contained on rocks from the Palo Pintado Formation are analyzed, in order to obtain the mean annual temperature (MAT) and the mean annual precipitation (MAP). The resulting values were: 23.98 °C and 330.8 mm. These results are coincident by the interpretation of different authors, who consider that the Palo Pintado Formation would have been deposited under a relatively humid environment, possibly as a consequence of the rains that affected locally the Angastaco basin región.


Sign in / Sign up

Export Citation Format

Share Document