scholarly journals A finite deformation electro-mechanically coupled computational multiscale formulation for electrical conductors

2021 ◽  
Author(s):  
T. Kaiser ◽  
A. Menzel

AbstractMotivated by the influence of deformation-induced microcracks on the effective electrical properties at the macroscale, an electro-mechanically coupled computational multiscale formulation for electrical conductors is proposed. The formulation accounts for finite deformation processes and is a direct extension of the fundamental theoretical developments presented by Kaiser and Menzel (Arch Appl Mech 91:1509–1526, 2021) who assume a geometrically linearised setting. More specifically speaking, averaging theorems for the electric field quantities are proposed and boundary conditions that a priori fulfil the extended Hill–Mandel condition of the electro-mechanically coupled problem are discussed. A study of representative boundary value problems in two- and three-dimensional settings eventually shows the applicability of the proposed formulation and reveals the severe influence of microscale deformation processes on the effective electrical properties at the macroscale.

2013 ◽  
Vol 845 ◽  
pp. 372-377 ◽  
Author(s):  
Nabipour Afrouzi Hadi ◽  
Zulkurnain Abdul-Malek ◽  
Saeed Vahabi Mashak ◽  
A.R. Naderipour

Cross-linked polyethylene is widely used as electrical insulation because of its excellent electrical properties such as low dielectric constant, low dielectric loss and also due to its excellent chemical resistance and mechanical flexibility. Nevertheless, the most important reason for failure of high voltage equipment is due to its insulation failure. The electrical properties of an insulator are affected by the presence of cavities within the insulating material, in particular with regard to the electric field and potential distributions. In this paper, the electric field and potential distributions in high voltage cables containing single and multiple cavities are studied. Three different insulating media, namely PE, XLPE, and PVC was modeled. COMSOL software which utilises the finite element method (FEM) was used to carry out the simulation. An 11kV underground cable was modeled in 3D for better observation and analyses of the generated voltage and field distributions. The results show that the electric field is affected by the presence of cavities in the insulation. Furthermore, the field strength and uniformity are also affected by whether cavities are radially or axially aligned, as well as the type of the insulating solid. The effect of insulator type due the presence of cavities was seen most prevalent in PVC followed by PE and then XLPE.


1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1622
Author(s):  
Wipawee Tepnatim ◽  
Witchuda Daud ◽  
Pitiya Kamonpatana

The microwave oven has become a standard appliance to reheat or cook meals in households and convenience stores. However, the main problem of microwave heating is the non-uniform temperature distribution, which may affect food quality and health safety. A three-dimensional mathematical model was developed to simulate the temperature distribution of four ready-to-eat sausages in a plastic package in a stationary versus a rotating microwave oven, and the model was validated experimentally. COMSOL software was applied to predict sausage temperatures at different orientations for the stationary microwave model, whereas COMSOL and COMSOL in combination with MATLAB software were used for a rotating microwave model. A sausage orientation at 135° with the waveguide was similar to that using the rotating microwave model regarding uniform thermal and electric field distributions. Both rotating models provided good agreement between the predicted and actual values and had greater precision than the stationary model. In addition, the computational time using COMSOL in combination with MATLAB was reduced by 60% compared to COMSOL alone. Consequently, the models could assist food producers and associations in designing packaging materials to prevent leakage of the packaging compound, developing new products and applications to improve product heating uniformity, and reducing the cost and time of the research and development stage.


1991 ◽  
Vol 202 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Akiyoshi Takeno ◽  
Norimasa Okui ◽  
Tetsuji Kitoh ◽  
Michiharu Muraoka ◽  
Susumu Umemoto ◽  
...  

2021 ◽  
pp. 0310057X2097665
Author(s):  
Natasha Abeysekera ◽  
Kirsty A Whitmore ◽  
Ashvini Abeysekera ◽  
George Pang ◽  
Kevin B Laupland

Although a wide range of medical applications for three-dimensional printing technology have been recognised, little has been described about its utility in critical care medicine. The aim of this review was to identify three-dimensional printing applications related to critical care practice. A scoping review of the literature was conducted via a systematic search of three databases. A priori specified themes included airway management, procedural support, and simulation and medical education. The search identified 1544 articles, of which 65 were included. Ranging across many applications, most were published since 2016 in non – critical care discipline-specific journals. Most studies related to the application of three-dimensional printed models of simulation and reported good fidelity; however, several studies reported that the models poorly represented human tissue characteristics. Randomised controlled trials found some models were equivalent to commercial airway-related skills trainers. Several studies relating to the use of three-dimensional printing model simulations for spinal and neuraxial procedures reported a high degree of realism, including ultrasonography applications three-dimensional printing technologies. This scoping review identified several novel applications for three-dimensional printing in critical care medicine. Three-dimensional printing technologies have been under-utilised in critical care and provide opportunities for future research.


Sign in / Sign up

Export Citation Format

Share Document