Development of efficient protocol for rice transformation overexpressing MAP kinase and their effect on root phenotypic traits

PROTOPLASMA ◽  
2019 ◽  
Vol 256 (4) ◽  
pp. 997-1011
Author(s):  
Pallavi Singh ◽  
Hussain Ara ◽  
Sumaira Tayyeba ◽  
Chandana Pandey ◽  
Alok Krishna Sinha
1995 ◽  
Vol 15 (4) ◽  
pp. 2197-2206 ◽  
Author(s):  
F Navarro-García ◽  
M Sánchez ◽  
J Pla ◽  
C Nombela

Mitogen-activated protein (MAP) kinases represent a group of serine/threonine protein kinases playing a central role in signal transduction processes in eukaryotic cells. Using a strategy based on the complementation of the thermosensitive autolytic phenotype of slt2 null mutants, we have isolated a Candida albicans homolog of Saccharomyces cerevisiae MAP kinase gene SLT2 (MPK1), which is involved in the recently outlined PKC1-controlled signalling pathway. The isolated gene, named MKC1 (MAP kinase from C. albicans), coded for a putative protein, Mkc1p, of 58,320 Da that displayed all the characteristic domains of MAP kinases and was 55% identical to S. cerevisiae Slt2p (Mpk1p). The MKC1 gene was deleted in a diploid Candida strain, and heterozygous and homozygous strains, in both Ura+ and Ura- backgrounds, were obtained to facilitate the analysis of the function of the gene. Deletion of the two alleles of the MKC1 gene gave rise to viable cells that grew at 28 and 37 degrees C but, nevertheless, displayed a variety of phenotypic traits under more stringent conditions. These included a low growth yield and a loss of viability in cultures grown at 42 degrees C, a high sensitivity to thermal shocks at 55 degrees C, an enhanced susceptibility to caffeine that was osmotically remediable, and the formation of a weak cell wall with a very low resistance to complex lytic enzyme preparations. The analysis of the functions downstream of the MKC1 gene should contribute to understanding of the connection of growth and morphogenesis in pathogenic fungi.


2004 ◽  
Vol 3 (2) ◽  
pp. 348-358 ◽  
Author(s):  
Amita Pandey ◽  
M. Gabriela Roca ◽  
Nick D. Read ◽  
N. Louise Glass

ABSTRACT Mitogen-activated protein (MAP) kinase signaling pathways are ubiquitous and evolutionarily conserved in eukaryotic organisms. MAP kinase pathways are composed of a MAP kinase, a MAP kinase kinase, and a MAP kinase kinase kinase; activation is regulated by sequential phosphorylation. Components of three MAP kinase pathways have been identified by genome sequence analysis in the filamentous fungus Neurospora crassa. One of the predicted MAP kinases in N. crassa, MAK-2, shows similarity to Fus3p and Kss1p of Saccharomyces cerevisiae, which are involved in sexual reproduction and filamentation, respectively. In this study, we show that an N. crassa mutant disrupted in mak-2 exhibits a pleiotropic phenotype: derepressed conidiation, shortened aerial hyphae, lack of vegetative hyphal fusion, female sterility, and autonomous ascospore lethality. We assessed the phosphorylation of MAK-2 during conidial germination and early colony development. Peak levels of MAK-2 phosphorylation were most closely associated with germ tube elongation, branching, and hyphal fusion events between conidial germlings. A MAP kinase kinase kinase (NRC-1) is the predicted product of N. crassa nrc-1 locus and is a homologue of STE11 in S. cerevisiae. An nrc-1 mutant shares many of the same phenotypic traits as the mak-2 mutant and, in particular, is a hyphal fusion mutant. We show that MAK-2 phosphorylation during early colony development is dependent upon the presence of NRC-1 and postulate that phosphorylation of MAK-2 is required for hyphal fusion events that occur during conidial germination.


2005 ◽  
Vol 173 (4S) ◽  
pp. 157-158
Author(s):  
Rono Mukherjee ◽  
Sarath K. Nalagatla ◽  
Mark A. Undenvood ◽  
John M.S. Bartlett ◽  
Joanne Edwards

2005 ◽  
Vol 11 ◽  
pp. 16
Author(s):  
Sandeep Kumar Mathur ◽  
Piyush Chandra ◽  
Sandhya Mishra ◽  
Piyush Ajmera ◽  
Praveen Sharma

Sign in / Sign up

Export Citation Format

Share Document