scholarly journals Intragranular deformation mechanisms in calcite deformed by high-pressure torsion at room temperature

2020 ◽  
Vol 114 (2) ◽  
pp. 105-118
Author(s):  
Roman Schuster ◽  
Gerlinde Habler ◽  
Erhard Schafler ◽  
Rainer Abart

AbstractPolycrystalline calcite was deformed to high strain at room-temperature and confining pressures of 1–4 GPa using high-pressure torsion. The high confining pressure suppresses brittle failure and allows for shear strains >100. The post-deformation microstructures show inter- and intragranular cataclastic deformation and a high density of mechanical e$$ \left\{01\overline{1}8\right\} $$011¯8 twins and deformation lamellae in highly strained porphyroclasts. The morphologies of the twins resemble twin morphologies that are typically associated with substantially higher deformation temperatures. Porphyroclasts oriented unfavorably for twinning frequently exhibit two types of deformation lamellae with characteristic crystallographic orientation relationships associated with calcite twins. The misorientation of the first deformation lamella type with respect to the host corresponds to the combination of one r$$ \left\{10\overline{1}4\right\} $$101¯4 twin operation and one specific f$$ \left\{01\overline{1}2\right\} $$011¯2 or e$$ \left\{01\overline{1}8\right\} $$011¯8 twin operation. Boundary sections of this lamella type often split into two separated segments, where one segment corresponds to an incoherent r$$ \left\{10\overline{1}4\right\} $$101¯4 twin boundary and the other to an f$$ \left\{01\overline{1}2\right\} $$011¯2 or e$$ \left\{01\overline{1}8\right\} $$011¯8 twin boundary. The misorientation of the second type of deformation lamellae corresponds to the combination of specific r$$ \left\{10\overline{1}4\right\} $$101¯4 and f$$ \left\{01\overline{1}2\right\} $$011¯2 twin operations. The boundary segments of this lamella type may also split into the constituent twin boundaries. Our results show that brittle failure can effectively be suppressed during room-temperature deformation of calcite to high strains if confining pressures in the GPa range are applied. At these conditions, the combination of successive twin operations produces hitherto unknown deformation lamellae.

Geophysics ◽  
1936 ◽  
Vol 1 (3) ◽  
pp. 378-379
Author(s):  
M. Mott‐Smith

This article describes experiments on the flow and rupture of rocks under compression, tension, and torsion, while at the same time subjected to a high confining pressure supplied through a liquid surrounding the specimen. The hydrostatic pressure of this liquid could be measured very accurately and could be maintained constant. In addition, a “differential” stress was applied to the specimen, and the deformation was measured directly. By using the high pressure technique of P. W. Bridgman the confining pressure was carried up to 13,000 atmospheres, equivalent to a depth in the earth’s crust of 28 miles, and four times that available to F. W. Adams in his pioneering experiments (1901–1917).


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Intan Fadhlina Mohamed ◽  
Seungwon Lee ◽  
Kaveh Edalati ◽  
Zenji Horita ◽  
Shahrum Abdullah ◽  
...  

This work presents a study related to the grain refinement of an aluminum A2618 alloy achieved by High-Pressure Torsion (HPT) known as a process of Severe Plastic Deformation (SPD). The HPT is conducted on disks of the alloy under an applied pressure of 6 GPa for 1 and 5 turns with a rotation speed of 1 rpm at room temperature. The HPT processing leads to microstructural refinement with an average grain size of ~250 nm at a saturation level after 5 turns. Gradual increases in hardness are observed from the beginning of straining up to a saturation level. This study thus suggests that hardening due to grain refinement is attained by the HPT processing of the A2618 alloy at room temperature.


2014 ◽  
Vol 619 ◽  
pp. 95-106 ◽  
Author(s):  
Xiao Guang Qiao ◽  
Ya Wei Zhao ◽  
Wei Min Gan ◽  
Ying Chen ◽  
Ming Yi Zheng ◽  
...  

2016 ◽  
Vol 656 ◽  
pp. 55-66 ◽  
Author(s):  
Yi Huang ◽  
Shima Sabbaghianrad ◽  
Abdulla I. Almazrouee ◽  
Khaled J. Al-Fadhalah ◽  
Saleh N. Alhajeri ◽  
...  

2020 ◽  
Vol 162 ◽  
pp. 110222 ◽  
Author(s):  
Clênio Silva ◽  
Luciano A. Montoro ◽  
Débora A.A. Martins ◽  
Priscila A. Machado ◽  
Pedro Henrique R. Pereira ◽  
...  

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhi-jun Zhang ◽  
Yao-hui Guo ◽  
Ya-kun Tian ◽  
Lin Hu ◽  
Xi-xian Wang ◽  
...  

Particle flow numerical simulation software (PFC3D) was utilized to establish the consolidated-undrained triaxial compression test numerical models of mine tailings with different dry densities to deeply investigate the macroscopic and microscopic characteristics of mine tailings in a tailing pond in Hunan Province. Comparing the results of the simulation and the laboratory experiment, the mesoscopic parameters of the particle flow numerical simulation were obtained through continuously adjusting the mesoscopic parameter with the higher degree of agreement between the stress-strain curve, the peak strength, and the elastic modulus as the determining standard. The macroscopic and microscopic characteristics of mine tailings were studied from the perspectives of stress-strain, axial strain-volume strain, coordination number, particle velocity vector, and contact force between particles. After numerous numerical tests, it was found that the PFC3D simulation results are consistent with experiment results of the dry density tailing samples under different confining pressures; compared with the high confining pressure, the simulation test results at lower confining pressures were more with that of the laboratory tests; low density and high confining pressure both have inhibitory effect on the dilatancy characteristics of triaxial samples; with the same confining pressure, the dilatancy tendency of low dry density samples is suppressed comparing with the high dry density samples. The initial coordination number of the numerical model is large, which proves that the contact degree of the model is good to some extent.


Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 751-765 ◽  
Author(s):  
Alejandra Quintanilla-Terminel ◽  
Mark E. Zimmerman ◽  
Brian Evans ◽  
David L. Kohlstedt

Abstract. Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, T∕Tm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications.


2006 ◽  
Vol 114 ◽  
pp. 45-50 ◽  
Author(s):  
Zhi Qing Yang

XRD, TEM, microhardness and thermal analysis were carried out on a series of Ni samples produced by high-pressure torsion (HPT). The evolution of microstructures and their inhomogeneity were investigated. The local microstrain showed dynamical oscillations as a function of the HPT rotations, demonstrating dynamical evolution of lattice defects during the procedure. Both XRD and TEM showed that a small difference in grain sizes remains even after 5 revolutions of HPT with smaller grain sizes at the peripheral region of the sample. The higher microhardness at the peripheral region is the result of the smaller grain sizes and the higher density of lattice defects, compared with the central region. Thermal treatment at a heating rate of 20K/min from room temperature to 473K did not result in decreased microhardness, but increased by about 10% for samples treated with not more than 3 rotations of HPT. The increase in microhardness was attributed to further grain refinement, the formation of a larger fraction of high-angle grain boundaries and grain boundaries being closer to equilibrium after recovery.


2014 ◽  
Vol 783-786 ◽  
pp. 2617-2622 ◽  
Author(s):  
Livia Raquel C. Malheiros ◽  
Roberto B. Figueiredo ◽  
Terence G. Langdon

High-Pressure Torsion (HPT) is widely used to refine the structure of metallic materials through the use of severe plastic deformation. This technique is used in this report to process different magnesium alloys using various processing conditions. The high hydrostatic pressure allows processing of these materials at room temperature without cracking. The structure was characterized and hardness distribution was determined at different areas of the processed samples. The results show significant structure refinement and increased hardness. The evolution of the structure and hardness depends on the alloying and HPT processing conditions.


2014 ◽  
Vol 794-796 ◽  
pp. 807-810 ◽  
Author(s):  
Seungwon Lee ◽  
Zen Ji Horita

An Al 7075 alloy (5.63mass%Zn-2.56mass%Mg-1.68mass%Cu-0.21mass%Fe-0.19mass%Cr-0.14mass%Si-0.02mass%Ti with balance of Al) was processed by high-pressure torsion (HPT) under an applied pressure of 6 GPa for 1, 3 and 5 revolutions with a rotation speed of 1 rpm at room temperature. Vickers microhardness saturated to a level of 220 Hv after the HPT processing and the grain size was refined to 120 nm at the state of the hardness saturation. Tensile tests were conducted with initial strain rates from 2.0 × 10-4 to 2.0 × 10-2 s-1 at temperatures as 200 °C and 250 °C (equivalent to 0.52Tm and 0.57Tm, respectively, where Tm is the melting point of the alloy). The HPT-processed samples for 3 revolutions exhibited superplastic elongations of 640% and 510% at 250 °C with initial strain rates of 2.0 × 10-3 s-1 and 2.0 × 10-2 s-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document