Comparison of an indirect impression scanning system and two direct intraoral scanning systems in vivo

2018 ◽  
Vol 23 (5) ◽  
pp. 2421-2427 ◽  
Author(s):  
Patricia Bosniac ◽  
Peter Rehmann ◽  
Bernd Wöstmann
2018 ◽  
Vol 43 (6) ◽  
pp. 573-580 ◽  
Author(s):  
M Zimmermann ◽  
A Ender ◽  
T Attin ◽  
A Mehl

SUMMARY Clinical Relevance: Accurate reproduction of the jaw relationship is important in many fields of dentistry. Maximum intercuspation can be registered with digital buccal scan procedures implemented in the workflow of many intraoral scanning systems. Objective: The aim of this study was to investigate the accuracy of buccal scan procedures with intraoral scanning devices for the registration of habitual intercuspation in vivo. The hypothesis was that there is no statistically significant difference for buccal scan procedures compared to registration methods with poured model casts. Methods and Materials: Ten individuals (full dentition, no dental rehabilitations) were subjects for five different habitual intercuspation registration methods: (CI) poured model casts, manual hand registration, buccal scan with inEOS X5; (BC) intraoral scan, buccal scan with CEREC Bluecam; (OC4.2) intraoral scan, buccal scan with CEREC Omnicam software version 4.2; (OC4.5β) intraoral scan, buccal scan with CEREC Omnicam version 4.5β; and (TR) intraoral scan, buccal scan with Trios 3. Buccal scan was repeated three times. Analysis of rotation (Rot) and translation (Trans) parameters was performed with difference analysis software (OraCheck). Statistical analysis was performed with one-way analysis of variance and the post hoc Scheffé test (p<0.05). Results: Statistical analysis showed no significant (p>0.05) differences in terms of translation between groups CI_Trans (98.74±112.01 μm), BC_Trans (84.12±64.95 μm), OC4.2_Trans (60.70±35.08 μm), OC4.5β_Trans (68.36±36.67 μm), and TR_Trans (66.60±64.39 μm). For rotation, there were no significant differences (p>0.05) for groups CI_Rot (0.23±0.25°), BC_Rot (0.73±0.52°), OC4.2_Rot (0.45±0.31°), OC4.5β_Rot (0.50±0.36°), and TR_Rot (0.47±0.65°). Conclusions: Intraoral scanning devices allow the reproduction of the static relationship of the maxillary and mandibular teeth with the same accuracy as registration methods with poured model casts.


Author(s):  
Pablo Cazenave ◽  
Katina Tiñacos ◽  
Ming Gao ◽  
Richard Kania ◽  
Rick Wang

New technologies for in-ditch non-destructive evaluation were lately developed and are becoming of mainstream use in the evaluation of external corrosion features for both In-Line-Inspection performance evaluation and pipeline integrity assessment. However, doubt was cast about the reliability and repeatability of these new technologies (hardware and processing software) when compared with those used in the traditional external-corrosion in-ditch measurement and the reliability of the pipeline integrity assessment calculations (PBurst) embedded in their software when compared with industry-wide accepted calculation methods. Therefore, the primary objective of this study is to evaluate the variation and repeatability of the measurements produced by these new technologies in corrosion feature profiling and associated PBurst calculations. Two new 3D scanning systems were used for the evaluation of two pipe samples removed from service which contain complex external corrosion features in laboratory. The reliability of the 3D scanning system in measuring corrosion profiles was evaluated against traditional profile gage data. In addition, the associated burst pressures reported by the systems were compared with results obtained using industry-widely used calculation methods. Also, consistencies, errors and gaps in results were identified. In this paper, the approach used for this study is described first, the evaluation results are then presented and finally the findings and their implications are discussed.


Author(s):  
Jae‐Hoon Kim ◽  
Sung‐Ae Son ◽  
Hyeonjong Lee ◽  
Yeon‐Jee Yoo ◽  
Seoung‐Jin Hong ◽  
...  

2020 ◽  
Vol 10 (21) ◽  
pp. 7762 ◽  
Author(s):  
Biagio Rapone ◽  
Cosimo Palmisano ◽  
Elisabetta Ferrara ◽  
Daniela Di Venere ◽  
Giovanni Albanese ◽  
...  

Background: with the emergence of technological innovations in the dental industry, one emerging trend has been the intraoral digitizing of patients by using intraoral scanning systems. Compared to taking conventional impressions, the use of intraoral scanners (IOS) is suitable for capturing direct optical impressions, helping to improve diagnostic efficacy, save time, reduce patient discomfort, and simplify clinical procedures. Intraoral scanning systems appear to have a high potential for providing guidance on proper standards of care. However, one main disadvantage is breathing and saliva secretion, which causes deviations, interfering with the applicability and accuracy of the optical impression. The aim of this study was to compare the validity and accuracy of three commercially available intraoral scanners, performing an analysis exploiting a wet model. Methods: an in vitro experimental study of four permanent teeth (two molars and two premolars) on the accuracy of copings obtained by subgingival preparations was performed, using an oral wet environment model. Two hundred and forty digital impressions were produced from three digital scanners using four samples. Descriptive analysis was performed using mean, standard deviation, and median. ANOVA and F-tests were performed to assess the amount of variability between the groups. For statistical analysis a 95% significance level was chosen. Results: all differences between groups were statistically significant. Conclusions: the present data implicate a huge impact of the oral biological fluids on the accuracy of digital impression to corresponding images, implying a failure of accurate impression under wetness conditions.


2013 ◽  
Vol 127 (6) ◽  
pp. 599-604 ◽  
Author(s):  
T Just ◽  
H W Pau

AbstractObjective:To introduce the application of confocal endomicroscopy during microlaryngoscopy, to enable intra-operative evaluation of human laryngeal epithelium.Methods:A rigid endoscope was connected to the scanner head of a Heidelberg Retina Tomograph II confocal laser scanning system via an adapter. The endoscope was gently placed on the surface of a vocal fold through a laryngoscope during microlaryngoscopy.Results:The application of confocal endomicroscopy using a rigid endoscope enabled technical improvements (i.e. improved image quality, automatic volume scan, and reduced tissue pressure due to the presence of a perforation plate with central hole at the end of the endoscope) which permitted greater sensitivity and improved handling. Confocal endomicroscopy provided good quality, in vivo, en-face images and enabled an assessment of laryngeal epithelium volume.Conclusion:This method enables the surgeon to monitor epithelial changes in pre-malignant lesions. The combination of confocal endomicroscopy together with optical coherence tomography (as a complementary technique that provides optical cross-sections) should be further explored in a formal clinicopathological study.


1974 ◽  
Vol 22 (7) ◽  
pp. 751-754 ◽  
Author(s):  
MORTON L. SCHULTZ ◽  
LEWIS E. LIPKIN ◽  
MARTA J. WADE ◽  
PETER F. LEMKIN ◽  
GEORGE M. CARMAN

Quantitative cytology requires accurate representation of a specimen's optical densities. As the requirements for measurement precision increase, instrument-induced errors become increasingly more difficult to reduce to the point at which their effect on experimental data is insignificant compared to the measured parameters. Shading induces a significant amount of amplitude ambiguity to data obtained from a scanning system. A method of shading correction on single pixels is introduced as a new way to reduce some errors that currently plague scanning systems.


2020 ◽  
Vol 48 (4) ◽  
pp. 899-907
Author(s):  
Vimal Pathak ◽  
Ashish Srivastava ◽  
Sumit Gupta

This paper presents an innovative method to investigate the accuracy and capability of contactless laser scanning systems in terms of geometrical dimensioning and tolerancing (GD&T) control. The current work proposes a standard benchmark part with typical features conforming to different families of GD&T. The benchmark part designed consists of various canonical features widely used in an engineering and industrial applications. Further, the adopted approach includes the methodology for comparison of geometry using a common alignment method for contactless scanning system and a CMM. In addition, proposal of different scanning orientation methods for contactless system is also realized. Surface reconstruction of the benchmark model is achieved using different reverse engineering software, and results are analyzed to study the correlation between different geometries of contact and contactless system. Considering the contact based measurement as a reference, different models developed were analyzed and compared in terms of geometrical and dimensional tolerance. The proposal of standard benchmark part and methodology for GD&T verification will provide a simple and effective way of performance evaluation for various contactless laser-scanning systems in terms of deviations.


Author(s):  
Yuhang Yang ◽  
Siyuan Chen ◽  
Letao Wang ◽  
Jingying He ◽  
Shang-Ming Wang ◽  
...  

Abstract High-resolution 3D measurement is crucial for a wide range of applications in manufacturing. With the recent development of optical technologies, the performance of many 3D scanning systems has entered the practical range for object digitizing, reverse engineering, quality control, and many other manufacturing applications. In order to extend the measurement capability to reflective or transparent surfaces, a common practice for reducing the unwanted reflection and refraction is to coat the surfaces with micro-particle spray. There is, however, limited discussion about the influence of coating spray on the resulted measurement precision of 3D optical scanning systems, and due to lack of standardized procedure for spray coating, the variability caused by different operators in surface measurement remains to be examined. This paper investigates the 3D data acquisition of spray-coated surfaces with a structured-light scanning system through experiments and statistical analysis. Both surface roughness and spatial statistics are used to quantitatively evaluate the characteristics of the 3D measurement system. Gauge R&R study is conducted to determine measurement repeatability and reproducibility. The results demonstrate that both the number of spray pass and the skill of the individual operator can significantly affect the performance of the structured-light scanning system. Other pertinent suggestions for the operation of 3D optical scanning systems with spray coating are also provided.


2019 ◽  
Vol 31 (1) ◽  
pp. 015401 ◽  
Author(s):  
Joo Beom Eom ◽  
Jaesung Ahn ◽  
Anjin Park

Sign in / Sign up

Export Citation Format

Share Document