Direct patterning of nanostructured ceramics from solution—differences from conventional printing and lithographic methods

2008 ◽  
Vol 12 (7-8) ◽  
pp. 775-782 ◽  
Author(s):  
Masahiro Yoshimura ◽  
Ruwan Gallage
2010 ◽  
Vol 48 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Hyunkwon Shin ◽  
Hyeongjae Lee ◽  
Hyeongjae Yoo ◽  
Ki-Soo Lim ◽  
Myeongkyu Lee

2021 ◽  
Vol 576 (1) ◽  
pp. 1-7
Author(s):  
A. E. Rabadanova ◽  
S. Kh. Gadzhimagomedov ◽  
N. M.-R. Alikhanov ◽  
M. V. Ilyichev ◽  
R. M. Emirov ◽  
...  

1995 ◽  
Vol 380 ◽  
Author(s):  
Craig T. Salling

ABSTRACTThe ability to create atomic-scale structures with the scanning tunneling microscope (STM) plays an important role in the development of a future nanoscale technology. I briefly review the various modes of STM-based fabrication and atomic manipulation. I focus on using a UHV-STM to directly pattern the Si(001) surface by atomic manipulation at room temperature. By carefully adjusting the tip morphology and pulse voltage, a single atomic layer can be removed from the sample surface to define features one atom deep. Segments of individual dimer rows can be removed to create structures with atomically straight edges and with lateral features as small as one dimer wide. Trenches ∼3 nm wide and 2–3 atomic layers deep can be created with less stringent control of patterning parameters. Direct patterning provides a straightforward route to the fabrication of nanoscale test structures under UHV conditions of cleanliness.


Author(s):  
Petr Dzik ◽  
Magdalena Morozová ◽  
Petr Klusoň ◽  
Michal Veselý

AbstractAn optimized reverse micelles sol-gel composition was deposited by inkjet direct patterning onto glass supports. Experimental “material printer” Fujifilm Dimatix 2831 was used for sol patterning. Printing was repeated up to 4 times in wet-to-dry manner and photocatalytic coatings of various thickness were obtained after final thermal calcination. Basic material properties of prepared coating were studied by optical microscopy, electron and atomic force imaging, Raman, XRD and UV-VIS spectrometry. Photocatalytic activity was evaluated by dye and fatty acid degradation rate as well as photoinduced hydrophilic conversion rate. Reverse micelles proved to be viable synthetic route for the preparation of titania coatings with even structure and their compatibility with inkjet direct patterning deposition was demonstrated.


2007 ◽  
Vol 12 (4) ◽  
pp. 574-582 ◽  
Author(s):  
Nelson Heriberto de Almeida Camargo ◽  
O. J. Bellini ◽  
Enori Gemelli ◽  
M. Tomiyama

Nanostructured materials have been largely studied in the last few years because they have a great potential to applications in different fields like physics, chemistry, biology, mechanic and medicine. Synthesis and characterization of nanostructured materials is a subject of great interest involving science, market, politicians, government and society. The nanostructured materials are in demand in biomedical area, mainly the bioceramics composed of calcium phosphates (Ca/P), which have an excellent biocompatibility and mineralogical characteristics similar to those of bones. The aim of this work was to optimize the method of powder synthesis of nanostructured calcium phosphate and of nanocomposites composed of calcium phosphate//SiO2n, containing 5, 10 and 15% (in volume) of nanometric silica (SiO2n). The results are expressed according to the method of synthesis, mineralogical and morphological characterization, and thermal behavior for the different compositions of the nanostructured powder synthesized.


2007 ◽  
Vol 19 (21) ◽  
pp. 3513-3516 ◽  
Author(s):  
C. M. Hessel ◽  
M. A. Summers ◽  
A. Meldrum ◽  
M. Malac ◽  
J. G. C. Veinot

Sign in / Sign up

Export Citation Format

Share Document