scholarly journals A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-β1 (TGF-β1) and its signaling pathway

2002 ◽  
Vol 47 (9) ◽  
pp. 478-483 ◽  
Author(s):  
Y. Watanabe ◽  
A. Kinoshita ◽  
T. Yamada ◽  
T. Ohta ◽  
T. Kishino ◽  
...  
2013 ◽  
Vol 305 (8) ◽  
pp. C867-C876 ◽  
Author(s):  
Sheng Yi ◽  
Fernando Pierucci-Alves ◽  
Bruce D. Schultz

The goal of this study was to determine whether transforming growth factor-β1 (TGF-β1) affects epithelial cells lining the vas deferens, an organ that is universally affected in cystic fibrosis male patients. In PVD9902 cells, which are derived from porcine vas deferens epithelium, TGF-β1 exposure significantly reduced short-circuit current ( Isc) stimulated by forskolin or a cell membrane-permeant cAMP analog, 8-pCPT-cAMP, suggesting that TGF-β1 affects targets of the cAMP signaling pathway. Electrophysiological results indicated that TGF-β1 reduces the magnitude of current inhibited by cystic fibrosis transmembrane conductance regulator (CFTR) channel blockers. Real-time RT-PCR revealed that TGF-β1 downregulates the abundance of mRNA coding for CFTR, while biotinylation and Western blot showed that TGF-β1 reduces both total CFTR and apical cell surface CFTR abundance. These results suggest that TGF-β1 causes a reduction in CFTR expression, which limits CFTR-mediated anion secretion. TGF-β1-associated attenuation of anion secretion was abrogated by SB431542, a TGF-β1 receptor I inhibitor. Signaling pathway studies showed that the effect of TGF-β1 on Isc was reduced by SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK). TGF-β1 exposure also increased the amount of phospho-p38 MAPK substantially. In addition, anisomycin, a p38 MAPK activator, mimicked the effect of TGF-β1, which further suggests that TGF-β1 affects PVD9902 cells through a p38 MAPK pathway. These observations suggest that TGF-β1, via TGF-β1 receptor I and p38 MAPK signaling, reduces CFTR expression to impair CFTR-mediated anion secretion, which would likely compound the effects associated with mild CFTR mutations and ultimately would compromise male fertility.


Author(s):  
Su Zhang ◽  
Guobao Li ◽  
Jing Bi ◽  
Qinglong Guo ◽  
Xiangdong Fu ◽  
...  

Abstract Previous studies demonstrated that transforming growth factor (TGT) β1 plays an immunosuppressive role in clinical tuberculosis. However, the contribution of TGF-β1 gene polymorphisms to human tuberculosis susceptibility remains undetermined. In this study, we showed that single-nucleotide polymorphisms (SNPs) in TGF-β1 gene were associated with increased susceptibility to tuberculosis in the discovery cohort (1533 case patients and 1445 controls) and the validation cohort (832 case patients and 1084 controls), and 2 SNPs located in the promoter region (rs2317130 and rs4803457) are in strong linkage disequilibrium. The SNP rs2317130 was associated with the severity of tuberculosis. Further investigation demonstrated that rs2317130 CC genotype is associated with higher TGF-β1 and interleukin 17A production. The mechanistic study showed that rs2317130 C allele affected TGF-β1 promoter activity by regulating binding activity to nuclear extracts. These findings provide insights into the pathogenic role of TGF-β1 in human tuberculosis and reveal a function for the TGF-β1 promoter SNPs in regulating immune responses during Mycobacterium tuberculosis infection.


2020 ◽  
Vol 52 (4) ◽  
pp. 411-420 ◽  
Author(s):  
Xue Zhang ◽  
Jigang Zhang ◽  
Heming Zhou ◽  
Gaolin Liu ◽  
Qin Li

Abstract Vasculogenic mimicry (VM), a newly defined pattern of tumor blood supply, has been identified in several malignant tumors, including hepatocellular carcinoma (HCC). Rho kinase (ROCK) plays an important role in various types of cancers. However, whether ROCK participates in transforming growth factor-β1 (TGF-β1)-induced VM formation is unclear. Here, we evaluated the role of ROCK in TGF-β1-induced VM formation in HCC. Our findings showed that the TGF-β1/ROCK signaling pathway is involved in VM formation by inducing the epithelial–mesenchymal transition. Furthermore, TGF-β1 and ROCK were found to play distinct roles in the cancer stem cell phenotype during VM formation. These results provide insights into potential antitumor therapies for inhibiting VM by targeting the TGF-β1/ROCK signaling pathway in HCC.


Sign in / Sign up

Export Citation Format

Share Document