Bioprocess production of sea cucumber rice wine and characterization of functional components and antioxidant activities

2014 ◽  
Vol 23 (3) ◽  
pp. 807-814 ◽  
Author(s):  
Shuai He ◽  
Lin Wang ◽  
Hao Dong ◽  
Pei Liu ◽  
Peiyu Shi ◽  
...  
2013 ◽  
Vol 1 (4) ◽  
pp. 307-314 ◽  
Author(s):  
Shuai He ◽  
Xiangzhao Mao ◽  
Pei Liu ◽  
Hong Lin ◽  
Zuyuan Du ◽  
...  

Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
A Śmiechowska ◽  
B Kusznierewicz ◽  
A Bartoszek ◽  
A Szumska ◽  
A Kawecka ◽  
...  

2014 ◽  
Vol 1038 ◽  
pp. 75-81
Author(s):  
Bernd Niese ◽  
Philipp Amend ◽  
Uwe Urmoneit ◽  
Stephan Roth ◽  
Michael Schmidt

Embedding stereolithography (eSLA) is an additive, hybrid process, which provides a flexible production of 3D components and the ability to integrate electrical and optical conductive structures and functional components within parts. However, the embedding of conductive circuits in stereolithography (SLA) parts assumes usage of process technologies, which enables their direct integration of conductive circuits during the layer-wise building process. In this context, a promising method for in-situ generation of conductive circuits is dispensing of conductive adhesive on the current surface of the SLA part and its subsequent sintering. In this paper, the laser sintering (λ = 355 nm) of conductive adhesive mainly consisting of silver nanoparticles is investigated. The work intends to evaluate the curing behavior of the conductive adhesive, the beam-matter-interactions and the thermal damage of the SLA substrate. The investigations revealed a fast and flexible laser sintering process for the generation of conductive circuits with sufficient electrical conductivity and sufficient current capacity load. In this context, a characterization of the conductive structures is done by measuring their electrical resistance and their potential current capacity load.


2017 ◽  
Vol 26 (5) ◽  
pp. 502-515 ◽  
Author(s):  
Saijun Lin ◽  
Ya-Ping Xue ◽  
Enli San ◽  
Tan Chee Keong ◽  
Lifang Chen ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1375
Author(s):  
María J. Moreno-Vásquez ◽  
Maribel Plascencia-Jatomea ◽  
Saúl Sánchez-Valdes ◽  
Judith C. Tanori-Córdova ◽  
Francisco J. Castillo-Yañez ◽  
...  

Nanoparticles based on chitosan modified with epigallocatechin gallate (EGCG) were synthetized by nanoprecipitation (EGCG-g-chitosan-P). Chitosan was modified by free-radical-induced grafting, which was verified by Fourier transform infrared (FTIR). Furthermore, the morphology, particle size, polydispersity index, and zeta potential of the nanoparticles were investigated. The grafting degree of EGCG, reactive oxygen species (ROS) production, antibacterial and antioxidant activities of EGCG-g-chitosan-P were evaluated and compared with those of pure EGCG and chitosan nanoparticles (Chitosan-P). FTIR results confirmed the modification of the chitosan with EGCG. The EGCG-g-chitosan-P showed spherical shapes and smoother surfaces than those of Chitosan-P. EGCG content of the grafted chitosan nanoparticles was 330 μg/g. Minimal inhibitory concentration (MIC) of EGCG-g-chitosan-P (15.6 μg/mL) was lower than Chitosan-P (31.2 μg/mL) and EGCG (500 μg/mL) against Pseudomonas fluorescens (p < 0.05). Additionally, EGCG-g-chitosan-P and Chitosan-P presented higher Staphylococcus aureus growth inhibition (100%) than EGCG at the lowest concentration tested. The nanoparticles produced an increase of ROS (p < 0.05) in both bacterial species assayed. Furthermore, EGCG-g-chitosan-P exhibited higher antioxidant activity than that of Chitosan-P (p < 0.05) in 2,2′-azino-bis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and ferric-reducing antioxidant power assays. Based on the above results, EGCG-g-chitosan-P shows the potential for food packaging and biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document