scholarly journals A novel method for measuring mechanical properties of vascular bundles in moso bamboo

2015 ◽  
Vol 61 (6) ◽  
pp. 562-568 ◽  
Author(s):  
Lili Shang ◽  
Zhengjun Sun ◽  
Xing’e Liu ◽  
Zehui Jiang
2021 ◽  
Vol 71 (3) ◽  
pp. 246-251
Author(s):  
Lili Shang ◽  
Xing'e Liu ◽  
Zehui Jiang ◽  
Genlin Tian ◽  
Shumin Yang

Abstract Moso bamboo (Phyllostachys edulis), an apt example of an anisotropic, functionally graded composite material, is the most important commercial bamboo species of China. This species has excellent mechanical properties due to its unique vascular bundle structure. This article examines the variation in mechanical properties of single vascular bundles with respect to their location within a bamboo culm. The mechanical exfoliation method was used to prepare the single vascular bundle. This study found that moso bamboo has superior stiffness and strength. Additionally, the variation in properties was large in the radial direction but minimal in longitudinal direction. The large variation in mechanical properties of vascular bundles can be ascribed to the synergistic effect of the fibrous sheath and parenchyma rather than to changes in fibrous sheath properties. This study provides a basis for the structure application for moso bamboo.


Author(s):  
Tao Gu ◽  
Shuaixin Zhang ◽  
Yuhong Zhao ◽  
Yurong Yang ◽  
Huafeng Liu ◽  
...  

2011 ◽  
Vol 43 (3) ◽  
pp. 289-294 ◽  
Author(s):  
J. Zhu ◽  
L. Ye ◽  
F. Wang

A Ti3AlC2/Al2O3 nanocomposite was synthesized using Ti, Al, C and TiO2 as raw materials by a novel combination of high-energy milling and hot pressing. The reaction path of the 3Ti-8C-16Al-9TiO2 mixture of powders was investigated, and the results show that the transitional phases TiC, TixAly and Al2O3 are formed in high-energy milling first, and then TixAly is transformed to the TiAl phase during the hot pressing. Finally, a reaction between TiC and TiAl occurs to produce Ti3AlC2 and the nanosized Ti3AlC2/Al2O3 composite is synthesized. The Ti3AlC2/Al2O3 composite possessed a good combination of mechanical properties with a hardness of 6.0 GPa, a flexural strength of 600 MPa, and a fracture toughness (K1C) of 5.8 MPa?m1/2. The strengthening and toughening mechanisms were also discussed.


2013 ◽  
Vol 45 (3) ◽  
pp. 379-383 ◽  
Author(s):  
A. Cias

Conventional sintering techniques for structural steels have been developed principally for Cu and Ni containing alloys. Applying these to Cr and Mn steels (successful products of traditional metallurgy) encounter the problem of the high affinity for oxygen of these elements. A solution is employing a microatmosphere in a semiclosed container which favours reduction reactions. This has already proved successful on a laboratory scale, especially with nitrogen as the furnace gas. Further modifications to the system, now described, include the use of two sintering boxes, one inside the other. Superior mechanical properties, even using air as the furnace gas, are attainable.


2021 ◽  
Author(s):  
Mingqian Wang ◽  
Kent Harries ◽  
Yuxiang Zhao ◽  
Qingfeng Xu ◽  
Zhuolin Wang ◽  
...  

2015 ◽  
Vol 1120-1121 ◽  
pp. 1187-1193 ◽  
Author(s):  
Bin Li Jiang ◽  
Zi Li Kou ◽  
De Jiang Ma ◽  
Yong Kun Wang ◽  
Chun Xia Li ◽  
...  

In the present study, we present a novel method to sinter Cr3C2 powders under high pressure without any addittives. The sintering Cr3C2 samples were charaterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), relative density measurements, Vicker’s hardness tests and Fracture toughness tests. The reasults show that Cr3C2 powders could be sintered to be bulk under the conditions of 3-5 GPa, 800-1200 °C and the heat preservation for 15 min. Moreover, the sintering body of Cr3C2 compound with the relative density of 99.84% by simultaneously tuning the pressure-temperature conditions exhibited excellent mechanical properties: a Vickers hardness of 20.3 GPa and a fracture toughness of ~8.9 MPam1/2. These properties were much higher than that by using the previous methods. The temperature condition obtained good mechanical properties in the experiment was about 1/3 lower than that using any other methods owing to the high pressure.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1056 ◽  
Author(s):  
Anastasiya Toenjes ◽  
Nicole Wielki ◽  
Daniel Meyer ◽  
Axel von Hehl

As part of a novel method for evolutionary material development, particle-oriented peening is used in this work to characterize 100Cr6 (AISI 52100) microparticles that were heat-treated by means of a differential scanning calorimeter (DSC). The plastic deformation of the samples in particle-oriented peening is correlated with the microstructural properties considering different heat-treatment variations. While the heating rate was kept constant (10 K/min) for all heat treatments, different heating temperatures (500 °C, 800 °C, 1000 °C and 1100 °C) were realized, held for 20 min and then cooled down at a rate of 50 K/min. Thereby, microstructural states with different (mechanical) properties are generated. For validation, microsections of the particles were analyzed and additional universal microhardness measurements (UMH) were performed. It could be shown that the quickly assessable plastic deformation descriptor reacts sensitively to the changes in the hardness due to the heat treatment.


2007 ◽  
Vol 342-343 ◽  
pp. 853-856 ◽  
Author(s):  
Duk Young Jung ◽  
Yu Bong Kang ◽  
Toshie Tsuchiya ◽  
Sadami Tsutsumi

Accurate measurement of the mechanical properties of artificial or cultivated cartilage is a major factor for determining successive regeneration of defective soft tissues. In this study, we developed a novel method that enabled the bulk modulus (k-modulus) to be measured nondestructively using the relationship between volume and pressure of living soft tissues. In order to validate this method we estimated the bulk modulus of soft silicone rubbers using our new method and a conventional method. The results showed a 5 ~ 10% difference between the results obtained with the two methods. Our method was used subsequently to measure the mechanical properties of cultivated cartilage samples (collagen gel type), that had been incubated for four weeks in the presence or absence of human articular chondrocytes (HACs). Our experiments showed that cultivated cartilage tissues grown in the presence of HACs had a higher bulk modulus (120 ± 20 kPa) than samples grown without HACs (90 ± 15 kPa). The results indicated that our novel method offered an effective method for measurement of volume changes in minute living soft tissues, with the measurements having a high degree of accuracy and precision. Furthermore, this method has significant advantages over conventional approaches as it can be used to rapidly and accurately evaluate the strength of soft tissues during cultivation without causing damage to the specimen.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Vladimir N. Strel’nikov ◽  
Valeriy Yu. Senichev ◽  
Alexey I. Slobodinyuk ◽  
Anna V. Savchuk ◽  
Elena R. Volkova

A novel method for developing frost-resistant epoxy-urethane binders is proposed that is based on mixtures of epoxy-urethane oligomers and diglycidyl urethane formed during synthesis. The microheterogeneous elastic materials obtained by curing these mixtures by the cycloaliphatic amines have a low glass transition temperature and high mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document