Evaluation of the effects of LLLT on biomechanical properties of tibial diaphysis in two rat models of experimental osteoporosis by a three point bending test

2015 ◽  
Vol 30 (3) ◽  
pp. 1117-1125 ◽  
Author(s):  
Mohammadjavad Fridoni ◽  
Reza Masteri Farahani ◽  
Hossein Nejati ◽  
Maryam Salimi ◽  
Seyed Masih Gharavi ◽  
...  
2016 ◽  
Vol 31 (4) ◽  
pp. 721-732 ◽  
Author(s):  
Zhaleh Mohsenifar ◽  
Mohammadjavad Fridoni ◽  
Mahdi Ghatrehsamani ◽  
Mohammad-amin Abdollahifar ◽  
Hojjatallah Abbaszadeh ◽  
...  

Author(s):  
Małgorzata M. Brzóska ◽  
Alicja Roszczenko ◽  
Joanna Rogalska ◽  
Małgorzata Gałażyn-Sidorczuk ◽  
Magdalena Mężyńska

The hypothesis that consumption of Aronia melanocarpa berries (chokeberries) extract, recently reported by us to improve bone metabolism in female rats at low-level and moderate chronic exposure to cadmium (1 and 5 mg Cd/kg diet for up to 24 months), may increase the bone resistance to fracture was investigated. Biomechanical properties of the neck (bending test with vertical head loading) and diaphysis (three-point bending test) of the femur of rats administered 0.1% aqueous chokeberry extract (65.74% of polyphenols) or/and Cd in the diet (1 and 5 mg Cd/kg) for 3, 10, 17, and 24 months were evaluated. Moreover, procollagen I was assayed in the bone tissue. The low-level and moderate exposure to Cd decreased procollagen I concentration in the bone tissue and weakened biomechanical properties of the femoral neck and diaphysis. Chokeberry extract administration under the exposure to Cd improved the bone collagen biosynthesis and femur biomechanical properties. The results allow for the conclusion that consumption of chokeberry products under exposure to Cd may improve the bone biomechanical properties and protect from fracture. This study provides support for Aronia melanocarpa berries being a promising natural agent for the skeleton protection under low-level and moderate chronic exposure to Cd.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2015 ◽  
Vol 1100 ◽  
pp. 152-155
Author(s):  
Libor Topolář ◽  
Hana Šimonová ◽  
Petr Misák

This paper reports the analysis of acoustic emission signals captured during three-point bending fracture tests of concrete specimens with different mixture composition. Acoustic emission is an experimental tool well suited for monitoring fracture processes in material. The typical acoustic emission patterns were identified in the acoustic emission records for three different concrete mixtures to further describe the under-the-stress behaviour and failure development. An understanding of microstructure–performance relationships is the key to true understanding of material behaviour. The acoustic emission results are accompanied by fracture parameters determined via evaluation of load versus deflection diagrams recorded during three-point bending fracture tests.


2021 ◽  
Vol 55 ◽  
pp. 1114-1121
Author(s):  
Daniel Jindra ◽  
Zdeněk Kala ◽  
Jiří Kala ◽  
Stanislav Seitl

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3795
Author(s):  
Fernando Suárez ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

The size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function. Nevertheless, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner and then compared with a previous experimental campaign in which PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


2015 ◽  
Vol 732 ◽  
pp. 85-90
Author(s):  
Lukáš Bek ◽  
Radek Kottner ◽  
Jan Krystek ◽  
Tomáš Kroupa

Different carbon and glass fibre strips were subjected to the double clamp buckle beam test. Furthermore, thin-walled glass fibre box-beams were subjected to the three-point bending test. Results of experiments were compared to different numerical simulations using buckling analysis or static analysis considering large deformations.


2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


2016 ◽  
Vol 837 ◽  
pp. 198-202
Author(s):  
Luboš Pazdera ◽  
Libor Topolář ◽  
Tomáš Vymazal ◽  
Petr Daněk ◽  
Jaroslav Smutny

The aim of the paper is focused on the analysis of the mechanical properties of the concrete specimens with plasticizer at three point bending test by the signal analysis of the acoustic emission signal. The evaluations were compared the measurement and the results obtained with theoretical presumptions. The Joint Time Frequency Analysis applied on measurement data and its evaluation is described. It is well known that the Acoustic Emission Method is a very sensitive method to determine active cracks into structure. However, evaluation of acoustic emission signals is very difficult. A non-traditional method was used to signal analysis of burst acoustic emission signals recorded during three point bending test.


Sign in / Sign up

Export Citation Format

Share Document