scholarly journals Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction

2019 ◽  
Vol 38 (4) ◽  
pp. 394-402 ◽  
Author(s):  
Hong-Ge Tan ◽  
Gang Xia ◽  
Li-Xiang Liu ◽  
Xiao-Hui Niu ◽  
Qing-Hai Hao
2019 ◽  
Vol 5 (3) ◽  
Author(s):  
Joshua Banks Mailman

Babbitt’s relatively early composition Semi-Simple Variations (1956) presents intriguing surface patterns that are not determined by its pre-compositional plan, but rather result from subsequent “improvised” decisions that are strategic. This video (the third of a three-part video essay) considers Babbitt’s own conversational pronouncements (in radio interviews) together with some particulars of his life-long musical activities, that together suggest uncanny affiliations to jazz improvisation. As a result of Babbitt’s creative reconceptualizing of planning and spontaneity in music, his pre-compositional structures (partial orderings) fit in an unexpected way into (or reformulate) the ecosystem relating music composition to the physical means of its performance.


Author(s):  
Jie Zhu ◽  
Soo Sien Seah ◽  
Irene Tee ◽  
Bing Hai Liu ◽  
Eddie Er ◽  
...  

Abstract In this paper, we describe automated FIB for TEM sample preparation using iFast software on a Helios 450HP dual-beam system. A robust iFast automation recipe needs to consider as many variables as possible in order to ensure consistent sample quality and high success rate. Variations mainly come from samples of different materials, structures, surface patterns, surface topography and surface charging. The recipe also needs to be user-friendly and provide high flexibility by allowing users to choose preferable working parameters for specific types of samples, such as: grounding, protective layer coating, milling steps, and final TEM lamella thickness/width. In addition to the iFast recipe, other practical factors affecting automation success rate are also discussed and highlighted.


2020 ◽  
Vol 117 (10) ◽  
pp. 5168-5175 ◽  
Author(s):  
Joel M. Sarapas ◽  
Tyler B. Martin ◽  
Alexandros Chremos ◽  
Jack F. Douglas ◽  
Kathryn L. Beers

Uncharged bottlebrush polymer melts and highly charged polyelectrolytes in solution exhibit correlation peaks in scattering measurements and simulations. Given the striking superficial similarities of these scattering features, there may be a deeper structural interrelationship in these chemically different classes of materials. Correspondingly, we constructed a library of isotopically labeled bottlebrush molecules and measured the bottlebrush correlation peak position q*=2π/ξ by neutron scattering and in simulations. We find that the correlation length scales with the backbone concentration, ξ∼cBB−0.47, in striking accord with the scaling of ξ with polymer concentration cP in semidilute polyelectrolyte solutions (ξ∼cP−1/2). The bottlebrush correlation peak broadens with decreasing grafting density, similar to increasing salt concentration in polyelectrolyte solutions. ξ also scales with sidechain length to a power in the range of 0.35–0.44, suggesting that the sidechains are relatively collapsed in comparison to the bristlelike configurations often imagined for bottlebrush polymers.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1789
Author(s):  
Dmitry Tolmachev ◽  
George Mamistvalov ◽  
Natalia Lukasheva ◽  
Sergey Larin ◽  
Mikko Karttunen

We used atomistic molecular dynamics (MD) simulations to study polyelectrolyte brushes based on anionic α,L-glutamic acid and α,L-aspartic acid grafted on cellulose in the presence of divalent CaCl2 salt at different concentrations. The motivation is to search for ways to control properties such as sorption capacity and the structural response of the brush to multivalent salts. For this detailed understanding of the role of side-chain length, the chemical structure and their interplay are required. It was found that in the case of glutamic acid oligomers, the longer side chains facilitate attractive interactions with the cellulose surface, which forces the grafted chains to lie down on the surface. The additional methylene group in the side chain enables side-chain rotation, enhancing this effect. On the other hand, the shorter and more restricted side chains of aspartic acid oligomers prevent attractive interactions to a large degree and push the grafted chains away from the surface. The difference in side-chain length also leads to differences in other properties of the brush in divalent salt solutions. At a low grafting density, the longer side chains of glutamic acid allow the adsorbed cations to be spatially distributed inside the brush resulting in a charge inversion. With an increase in grafting density, the difference in the total charge of the aspartic and glutamine brushes disappears, but new structural features appear. The longer sides allow for ion bridging between the grafted chains and the cellulose surface without a significant change in main-chain conformation. This leads to the brush structure being less sensitive to changes in salt concentration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masashi Nakatani ◽  
Yasuaki Kobayashi ◽  
Kota Ohno ◽  
Masaaki Uesaka ◽  
Sayako Mogami ◽  
...  

AbstractThe human hand can detect both form and texture information of a contact surface. The detection of skin displacement (sustained stimulus) and changes in skin displacement (transient stimulus) are thought to be mediated in different tactile channels; however, tactile form perception may use both types of information. Here, we studied whether both the temporal frequency and the temporal coherency information of tactile stimuli encoded in sensory neurons could be used to recognize the form of contact surfaces. We used the fishbone tactile illusion (FTI), a known tactile phenomenon, as a probe for tactile form perception in humans. This illusion typically occurs with a surface geometry that has a smooth bar and coarse textures in its adjacent areas. When stroking the central bar back and forth with a fingertip, a human observer perceives a hollow surface geometry even though the bar is physically flat. We used a passive high-density pin matrix to extract only the vertical information of the contact surface, suppressing tangential displacement from surface rubbing. Participants in the psychological experiment reported indented surface geometry by tracing over the FTI textures with pin matrices of the different spatial densities (1.0 and 2.0 mm pin intervals). Human participants reported that the relative magnitude of perceived surface indentation steeply decreased when pins in the adjacent areas vibrated in synchrony. To address possible mechanisms for tactile form perception in the FTI, we developed a computational model of sensory neurons to estimate temporal patterns of action potentials from tactile receptive fields. Our computational data suggest that (1) the temporal asynchrony of sensory neuron responses is correlated with the relative magnitude of perceived surface indentation and (2) the spatiotemporal change of displacements in tactile stimuli are correlated with the asynchrony of simulated sensory neuron responses for the fishbone surface patterns. Based on these results, we propose that both the frequency and the asynchrony of temporal activity in sensory neurons could produce tactile form perception.


Physics Today ◽  
2021 ◽  
Vol 74 (3) ◽  
pp. 60-60
Author(s):  
Alex Lopatka
Keyword(s):  

Langmuir ◽  
2021 ◽  
Author(s):  
Shohei Shiomoto ◽  
Hayato Higuchi ◽  
Kazuo Yamaguchi ◽  
Hiromitsu Takaba ◽  
Motoyasu Kobayashi

Sign in / Sign up

Export Citation Format

Share Document