scholarly journals Identification of a familial cleidocranial dysplasia with a novel RUNX2 mutation and establishment of patient-derived induced pluripotent stem cells

Odontology ◽  
2021 ◽  
Author(s):  
Atsuko Hamada ◽  
Hanae Mukasa ◽  
Yuki Taguchi ◽  
Eri Akagi ◽  
Fumitaka Obayashi ◽  
...  

AbstractCleidocranial dysplasia (CCD) is an autosomal dominant hereditary disease associated with the gene RUNX2. Disease-specific induced pluripotent stem cells (iPSCs) have emerged as a useful resource to further study human hereditary diseases such as CCD. In this study, we identified a novel CCD-specific RUNX2 mutation and established iPSCs with this mutation. Biopsies were obtained from familial CCD patients and mutation analyses were performed through Sanger sequencing and next generation sequencing. CCD-specific human iPSCs (CCD-hiPSCs) were established and maintained under completely defined serum, feeder, and integration-free condition using a non-integrating replication-defective Sendai virus vector. We identified the novel mutation RUNX2_c.371C>G and successfully established CCD-hiPSCs. The CCD-hiPSCs inherited the same mutation, possessed pluripotency, and showed the ability to differentiate the three germ layers. We concluded that RUNX2_c.371C>G was likely pathogenic because our results, derived from next generation sequencing, are supported by actual clinical evidence, familial tracing, and genetic data. Thus, we concluded that hiPSCs with a novel CCD-specific RUNX2 mutation are viable as a resource for future studies on CCD.

2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johanna Geuder ◽  
Lucas E. Wange ◽  
Aleksandar Janjic ◽  
Jessica Radmer ◽  
Philipp Janssen ◽  
...  

AbstractComparing the molecular and cellular properties among primates is crucial to better understand human evolution and biology. However, it is difficult or ethically impossible to collect matched tissues from many primates, especially during development. An alternative is to model different cell types and their development using induced pluripotent stem cells (iPSCs). These can be generated from many tissue sources, but non-invasive sampling would decisively broaden the spectrum of non-human primates that can be investigated. Here, we report the generation of primate iPSCs from urine samples. We first validate and optimize the procedure using human urine samples and show that suspension- Sendai Virus transduction of reprogramming factors into urinary cells efficiently generates integration-free iPSCs, which maintain their pluripotency under feeder-free culture conditions. We demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a non-sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We show that the urine-derived human iPSCs are indistinguishable from well characterized PBMC-derived human iPSCs and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this study introduces a novel and efficient approach to non-invasively generate iPSCs from primate urine. This will extend the zoo of species available for a comparative approach to molecular and cellular phenotypes.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1622
Author(s):  
Liang Xu ◽  
Hisatoshi Hanamatsu ◽  
Kentaro Homan ◽  
Tomohiro Onodera ◽  
Takuji Miyazaki ◽  
...  

Due to the limited intrinsic healing potential of cartilage, injury to this tissue may lead to osteoarthritis. Human induced pluripotent stem cells (iPSCs), which can be differentiated into chondrocytes, are a promising source of cells for cartilage regenerative therapy. Currently, however, the methods for evaluating chondrogenic differentiation of iPSCs are very limited; the main techniques are based on the detection of chondrogenic genes and histological analysis of the extracellular matrix. The cell surface is coated with glycocalyx, a layer of glycoconjugates including glycosphingolipids (GSLs) and glycoproteins. The glycans in glycoconjugates play important roles in biological events, and their expression and structure vary widely depending on cell types and conditions. In this study, we performed a quantitative GSL-glycan analysis of human iPSCs, iPSC-derived mesenchymal stem cell like cells (iPS-MSC like cells), iPS-MSC-derived chondrocytes (iPS-MSC-CDs), bone marrow-derived mesenchymal stem cells (BMSCs), and BMSC-derived chondrocytes (BMSC-CDs) using glycoblotting technology. We found that GSL-glycan profiles differed among cell types, and that the GSL-glycome underwent a characteristic alteration during the process of chondrogenic differentiation. Furthermore, we analyzed the GSL-glycome of normal human cartilage and found that it was quite similar to that of iPS-MSC-CDs. This is the first study to evaluate GSL-glycan structures on human iPS-derived cartilaginous particles under micromass culture conditions and those of normal human cartilage. Our results indicate that GSL-glycome analysis is useful for evaluating target cell differentiation and can thus support safe regenerative medicine.


2020 ◽  
Vol 56 (10) ◽  
pp. 888-895
Author(s):  
Atsuko Hamada ◽  
Eri Akagi ◽  
Fumitaka Obayashi ◽  
Sachiko Yamasaki ◽  
Koichi Koizumi ◽  
...  

AbstractNoonan syndrome is an autosomal dominant developmental disorder. Although it is relatively common, and its phenotypical variability is well documented, its pathophysiology is not fully understood. Previously, with the aim of revealing the pathogenesis of genetic disorders, we reported the induction of cleidocranial dysplasia-specific human-induced pluripotent stem cells (hiPSCs) from patient’s dental pulp cells (DPCs) under serum-free, feeder-free, and integration-free conditions. Notably, these cells showed potential for application to genetic disorder disease models. Furthermore, using similar procedures, we reported the induction of hiPSCs derived from peripheral blood mononuclear cells (PBMCs) of healthy volunteers. These methods are beneficial, because they are carried out without invasive and painful biopsies. Using those procedures, we reprogrammed DPCs and PBMCs that were derived from a patient with Noonan syndrome (NS) to establish NS-specific hiPSCs (NS-DPC-hiPSCs and NS-PBMC-hiPSCs, respectively). The induction efficiency of NS-hiPSCs was higher than that of WT-hiPSCs. We hypothesize that this was caused by high NANOG expression. Here, we describe the experimental results and findings related to NS-hiPSCs. This is the first report on the establishment of NS-hiPSCs and their disease modeling.


2020 ◽  
Vol 318 (4) ◽  
pp. L671-L683
Author(s):  
Jinghui Gao ◽  
Sophia Petraki ◽  
Xingshen Sun ◽  
Leonard A. Brooks ◽  
Thomas J. Lynch ◽  
...  

Ferrets are an attractive mammalian model for several diseases, especially those affecting the lungs, liver, brain, and kidneys. Many chronic human diseases have been difficult to model in rodents due to differences in size and cellular anatomy. This is particularly the case for the lung, where ferrets provide an attractive mammalian model of both acute and chronic lung diseases, such as influenza, cystic fibrosis, A1A emphysema, and obliterative bronchiolitis, closely recapitulating disease pathogenesis, as it occurs in humans. As such, ferrets have the potential to be a valuable preclinical model for the evaluation of cell-based therapies for lung regeneration and, likely, for other tissues. Induced pluripotent stem cells (iPSCs) provide a great option for provision of enough autologous cells to make patient-specific cell therapies a reality. Unfortunately, they have not been successfully created from ferrets. In this study, we demonstrate the generation of ferret iPSCs that reflect the primed pluripotent state of human iPSCs. Ferret fetal fibroblasts were reprogrammed and acquired core features of pluripotency, having the capacity for self-renewal, multilineage differentiation, and a high-level expression of the core pluripotency genes and pathways at both the transcriptional and protein level. In conclusion, we have generated ferret pluripotent stem cells that provide an opportunity for advancing our capacity to evaluate autologous cell engraftment in ferrets.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Damián Hernández ◽  
Rodney Millard ◽  
Priyadharshini Sivakumaran ◽  
Raymond C. B. Wong ◽  
Duncan E. Crombie ◽  
...  

Background.Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes.Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days.Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression ofACTC1,TNNT2,MYH7, andMYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner.Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.


2020 ◽  
Author(s):  
Johanna Geuder ◽  
Mari Ohnuki ◽  
Lucas E. Wange ◽  
Aleksandar Janjic ◽  
Johannes W. Bagnoli ◽  
...  

SummaryComparing the molecular and cellular properties among primates is crucial to better understand human evolution and biology. However, it is difficult or ethically even impossible to collect matched tissues from many primates, especially during development. An alternative is to model different cell types and their development using induced pluripotent stem cells (iPSCs). These can be generated from many tissue sources, but non-invasive sampling would decisively broaden the spectrum of non-human primates that can be investigated. Here, we report the generation of primate iPSCs from urine samples. We first validate and optimize the procedure using human urine samples and show that Sendai virus transduction of reprogramming factors into urinary cells efficiently generates integration-free iPSCs, which maintain their pluripotency under feeder-free culture conditions. We demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a non-sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We show that the urine-derived human iPSCs are indistinguishable from well characterized PBMC-derived human iPSCs and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this study introduces a novel and efficient approach to generate iPSCs non-invasively from primate urine. This will allow to extend the zoo of species available for a comparative approach to molecular and cellular phenotypes.Graphical AbstractWorkflow overview for establishing iPSCs from primate urine(A) We established the protocol for human urine based on a previous description (Zhou 2012). We tested volume, storage and culture conditions for primary cells and compared reprogramming by overexpression of OCT3/4, SOX2, KLF4 and MYC (OSKM) via lipofection of episomal vectors and via transduction of a sendai virus derived vector (SeV). (B) We used the the protocol established in humans and adapted it for unsterile floor-collected samples from non-human primates by adding Normocure to the first passages of primary cell culture and reprogrammed visually healthy and uncontaminated cultures using SeV. (C) Pluripotency of established cultures was verified by marker expression, differentiation capacity and cell type classification using RNA sequencing.


2020 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Alice Sabet ◽  
Negar Azarpira ◽  
Saeid Ghavami ◽  
Leila Kohan

Background: Autophagy is a vital cell survival mechanism that authorizes cells to assort to metabolic stress and is essential for the development and maintenance of cellular and tissue homeostasis, as well as the prevention of human disease. It has also been shown that autophagy plays a significant role in the development and differentiation of stem cells, as well as induced pluripotent stem cells (iPSCs). Objectives: The present study aimed to examine the mRNA expression of the ATG5 gene, one of the key markers of autophagy in human iPSCs (hiPSCs) during endoderm induction. Methods: In this study, we cultured the human iPSC line (R1-hiPSC1) on mitomycin-C, inactivated mouse embryonic fibroblasts (MEF) layer, and used hanging drop protocol to generate embryoid body (EB) and expose differentiation. The Real-time PCR method was used to examine the mRNA expression level of ATG5 in hiPSC during endoderm induction. Results: Our results demonstrated the high mRNA expression of ATG5 in the MEI stage, which shows the high rate of autophagy in MEI days rather than the other stages of differentiation. Conclusions: The modification of ATG5 gene expression within hiPSC during endoderm induction shows the importance of autophagy assessments in hiPSC differentiation. Therefore, subsequent studies are needed to clarify the details of autophagy effects on hiPSC differentiation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohsen Ebrahimi ◽  
Mehdi Forouzesh ◽  
Setareh Raoufi ◽  
Mohammad Ramazii ◽  
Farhoodeh Ghaedrahmati ◽  
...  

AbstractDuring the last years, several strategies have been made to obtain mature erythrocytes or red blood cells (RBC) from the bone marrow or umbilical cord blood (UCB). However, UCB-derived hematopoietic stem cells (HSC) are a limited source and in vitro large-scale expansion of RBC from HSC remains problematic. One promising alternative can be human pluripotent stem cells (PSCs) that provide an unlimited source of cells. Human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are self-renewing progenitors that can be differentiated to lineages of ectoderm, mesoderm, and endoderm. Several previous studies have revealed that human ESCs can differentiate into functional oxygen-carrying erythrocytes; however, the ex vivo expansion of human ESC-derived RBC is subjected to ethical concerns. Human iPSCs can be a suitable therapeutic choice for the in vitro/ex vivo manufacture of RBCs. Reprogramming of human somatic cells through the ectopic expression of the transcription factors (OCT4, SOX2, KLF4, c-MYC, LIN28, and NANOG) has provided a new avenue for disease modeling and regenerative medicine. Various techniques have been developed to generate enucleated RBCs from human iPSCs. The in vitro production of human iPSC-derived RBCs can be an alternative treatment option for patients with blood disorders. In this review, we focused on the generation of human iPSC-derived erythrocytes to present an overview of the current status and applications of this field.


2019 ◽  
Vol 34 (5) ◽  
pp. 525-532 ◽  
Author(s):  
Yasuhiro Umemura ◽  
Izumi Maki ◽  
Yoshiki Tsuchiya ◽  
Nobuya Koike ◽  
Kazuhiro Yagita

The mammalian circadian clock, which coordinates various physiological functions, develops gradually during ontogeny. Recently, we have reported the posttranscriptional suppression of CLOCK protein expression as a key mechanism of the emergence of the circadian clock during mouse development. However, whether a common mechanism regulates the development of the human circadian clock remains unclear. In the present study, we show that human induced pluripotent stem cells (iPSCs) have no discernible circadian molecular oscillation. In addition, in vitro differentiation culture of human iPSCs required a longer duration than that required in mouse for the emergence of circadian oscillations. The expression of CLOCK protein in undifferentiated human iPSCs was posttranscriptionally suppressed despite the expression of CLOCK mRNA, which is consistent with our previous observations in mouse embryonic stem cells, iPSCs, and early mouse embryos. These results suggest that CLOCK protein expressions could be posttranscriptionally suppressed in the early developmental stage not only in mice but also in humans.


Sign in / Sign up

Export Citation Format

Share Document