scholarly journals Coexistence without conflict, the recovery of Ireland’s endangered wild grey partridge Perdix perdix

2021 ◽  
Vol 67 (3) ◽  
Author(s):  
Kieran Buckley ◽  
Conor O. Gorman ◽  
Michael Martyn ◽  
Brendan Kavanagh ◽  
Alex Copland ◽  
...  

AbstractBy 1995, Ireland’s wild grey partridge (Perdix perdix) was extinct nationally as a breeding species on farmland. The two populations remaining were confined to Ireland’s industrial cutaway peat bogs. One of these populations was deemed viable. In 1996, the National Parks and Wildlife Service of Ireland and the Irish Grey Partridge Conservation Trust established a conservation project to prevent the extirpation of this population. In this paper, we explore the impact of each management factor on two key demographic response variables: chick survival rates and the number of breeding pairs. The numbers of linear metres of nesting strips had the most significantly positive effect on spring pairs, followed by the total number of supplementary food hoppers and the total hectares of brood-rearing and over-winter cover. Counterintuitively, encounters with Hen Harriers (Circus cyaneus) did not negatively affect chick survival or the number of spring pairs. While we cannot rule out the contribution of each explanatory variable, none had a statistically significant effect on chick survival, suggesting there may be locally confounding factors that our model could not capture. The weather conditions during the peak hatching period had a significant influence on chick survival, with the average maximum temperature observed in June having the strongest positive association with an increase of 1 °C in the average maximum temperature in June associated with an increase in chick survival of 9.4% on average. Conversely, for every additional 1 mm of rain in June, there was a 0.23% drop in chick survival on average.

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1020
Author(s):  
Slavko Bernáth ◽  
Oleg Paulen ◽  
Bernard Šiška ◽  
Zuzana Kusá ◽  
František Tóth

The impact of warming on the phenology of grapevine (Vitis vinifera L.) in conditions of central Europe was evaluated at the locality of Dolné Plachtince in the Slovakian wine region. In Welschriesling and Pinot Blanc model varieties, the onset of phenophases as defined in the BBCH scale over the period of 1985 to 2018 was observed. Based on the data obtained, the influence of the average and average maximum temperature and GDD on the onset of phenophases was evaluated. The results observed indicate earlier budburst by five to seven days, earlier beginning of flowering by 7 to 10 days, earlier berry softening by 18 days, and harvest dates advanced by 8 to 10 days on average. In both varieties, the highest influence of the average monthly temperature in March on budburst, the highest influence of the average monthly temperature and the average maximum temperature in May on the beginning of flowering, and the highest statistically significant influence of the average maximum temperature in June on the softening of berries was found. Warming observed in moderate climate conditions of northern wine regions in central Europe (Slovakia) has not yet caused changes in the grapevine phenology stable enough to require serious adaptation measures.


Author(s):  
Slavko Bernáth ◽  
Oleg Paulen ◽  
Bernard Šiška ◽  
Zuzana Kusá ◽  
František Tóth

The impact of warming on the phenology of grapevine (Vitis vinifera L.) in conditions of Central Europe was evaluated at the locality of Dolné Plachtince in the Slovakian wine region. In Welschriesling and Pinot Blanc model varieties there was observed onset of phenophases as defined in BBCH scale over 1985–2018 period. Based on the data obtained there was evaluated the influence of average and average maximum temperature and GDD on the onset of phenophases. The results observed indicate earlier budburst by 5–7 days, earlier beginning of flowering by 7–10 days, and earlier berry softening by 18 days, and harvest dates advanced by 8–10 days on average. In both varieties there was found the highest influence of the average monthly temperature in March on budburst, the highest influence of the average monthly temperature and the average maximum temperature in May on the beginning of flowering, and the highest, statistically significant influence of the average maximum temperature in June on grape veraison. The warming observed in moderate climate conditions of northern wine regions in Central Europe (Slovakia) has not caused yet the changes in the grapevine phenology stable enough to require serious adaptation measures.


Author(s):  
Slavko Bernáth ◽  
Oleg Paulen ◽  
Bernard Šiška ◽  
Zuzana Kusá ◽  
František Tóth

The impact of warming on the phenology of grapevine (Vitis vinifera L.) in conditions of Central Europe was evaluated at the locality of Dolné Plachtince in the Slovakian wine region. In Welschriesling and Pinot Blanc model varieties there was observed onset of phenophases as defined in BBCH scale over 1985–2018 period. Based on the data obtained there was evaluated the influence of average and average maximum temperature and GDD on the onset of phenophases. The results observed indicate earlier budburst by 5–7 days, earlier beginning of flowering by 7–10 days, and earlier berry softening by 18 days, and harvest dates advanced by 8–10 days on average. In both varieties there was found the highest influence of the average monthly temperature in March on budburst, the highest influence of the average monthly temperature and the average maximum temperature in May on the beginning of flowering, and the highest, statistically significant influence of the average maximum temperature in June on grape veraison. The warming observed in moderate climate conditions of northern wine regions in Central Europe (Slovakia) has not caused yet the changes in the grapevine phenology stable enough to require serious adaptation measures.


Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 71 ◽  
Author(s):  
Hua Zhou ◽  
Yang Luo ◽  
Guang Zhou ◽  
Jian Yu ◽  
Sher Shah ◽  
...  

Subtropical forest productivity is significantly affected by both natural disturbances (local and regional climate changes) and anthropogenic activities (harvesting and planting). Monthly measures of forest aboveground productivity from natural forests (primary and secondary forests) and plantations (mixed and single-species forests) were developed to explore the sensitivity of subtropical mountain productivity to the fluctuating characteristics of climate change in South China, spanning the 35-year period from 1981 to 2015. Statistical analysis showed that climate regulation differed across different forest types. The monthly average maximum temperature, precipitation, and streamflow were positively correlated with primary and mixed-forest aboveground net primary productivity (ANPP) and its components: Wood productivity (WP) and canopy productivity (CP). However, the monthly average maximum temperature, precipitation, and streamflow were negatively correlated with secondary and single-species forest ANPP and its components. The number of dry days and minimum temperature were positively associated with secondary and single-species forest productivity, but inversely associated with primary and mixed forest productivity. The multivariate ENSO (EI Niño-Southern Oscillation) index (MEI), computed based on sea level pressure, surface temperature, surface air temperature, and cloudiness over the tropical Pacific Ocean, was significantly correlated with local monthly maximum and minimum temperatures (Tmax and Tmin), precipitation (PRE), streamflow (FLO), and the number of dry days (DD), as well as the monthly means of primary and mixed forest aboveground productivity. In particular, the mean maximum temperature increased by 2.5, 0.9, 6.5, and 0.9 °C, and the total forest aboveground productivity decreased by an average of 5.7%, 3.0%, 2.4%, and 7.8% in response to the increased extreme high temperatures and drought events during the 1986/1988, 1997/1998, 2006/2007, and 2009/2010 EI Niño periods, respectively. Subsequently, the total aboveground productivity values increased by an average of 1.1%, 3.0%, 0.3%, and 8.6% because of lagged effects after the wet La Niña periods. The main conclusions of this study demonstrated that the influence of local and regional climatic fluctuations on subtropical forest productivity significantly differed across different forests, and community position and plant diversity differences among different forest types may prevent the uniform response of subtropical mountain aboveground productivity to regional climate anomalies. Therefore, these findings may be useful for forecasting climate-induced variation in forest aboveground productivity as well as for selecting tree species for planting in reforestation practices.


1989 ◽  
Vol 7 (6) ◽  
pp. 798-802 ◽  
Author(s):  
S K Williford ◽  
P L Salisbury ◽  
J E Peacock ◽  
J M Cruz ◽  
B L Powell ◽  
...  

Dental disorders have been recognized as major sources of infection in patients with hematologic malignancies (HM). Management of severe dental infections usually includes dental extractions (DE), but the safety of extractions in patients with HM who are at risk for bleeding, sepsis, and poor wound healing has not been well established. In conjunction with an aggressive program of dental care, 142 DE were performed in 26 patients with acute leukemia, myelodysplastic syndromes, and myeloproliferative disorders. Granulocytopenia (less than 1,000 granulocytes/microL) was present during or within ten days following surgery in 14 patients. In these 14 patients (101 DE), the mean granulocyte count was less than 450/microL, with a median duration of granulocytopenia following surgery of 32 days (range, four to 169 days). Thrombocytopenia (less than 100,000 platelets/microL) occurred during or within two days following surgery in 13 patients (80 DE), with a mean platelet count of 63,500/microL. Transfusions were given for platelet counts less than 50,000/microL. All DE were performed without significant complications. Bleeding was minor to moderate and easily controlled with local measures; no patient required transfusion due to hemorrhage. Average maximum temperature 24 hours after DE was 37.7 degrees C. No episodes of bacteremia were documented within ten days of DE. Minor delay in wound healing was observed in two patients. We conclude that DE can be safely performed in patients with HM in combination with aggressive supportive care.


2002 ◽  
Vol 138 (1) ◽  
pp. 97-102 ◽  
Author(s):  
M. MELLADO ◽  
C. A. MEZA-HERRERA

Conception rate and prolificacy of dairy and crossbred goats under intensive conditions in an arid environment of northern Mexico (26° 06′ 15′′ N; maximum temperature throughout the year 12–42 °C, mean annual precipitation 186 mm, and RH <40% year-round) were examined with respect to season of mating, ambient temperature and rainfall at mating. The database contained 4194 natural services. Conception of goats inseminated with average maximum ambient temperatures >34 °C was significantly higher (P<0·01) than conception of goats inseminated when the average maximum temperature 3 days before breeding was <34 °C. The warmest season favoured conception rate (70% in spring; P<0·01) as compared to cooler seasons (62% and 64% for summer and autumn, respectively). Conception rate of goats bred when rain was present was 14 percentage points lower (P<0·01) compared to mating with no rain. When maximum temperatures on the day of mating were >34 °C, cooler temperatures 1 to 3 days before or after the day of mating were associated with a significant increase in the number of kids born. When the maximum temperature at mating was >36 °C, prolificacy for goats exposed to higher or lower temperatures 1 day before mating was 1·56 and 1·65, respectively (P<0·05). Similarly, when the maximum temperature at mating was 34–36 °C, prolificacy was higher for goats exposed to cooler temperatures as compared to warmer temperatures 1 day (1·64 v. 1·49; P<0·01) or 3 days (1·63 v. 1·48; P<0·01) after mating, with respect to the temperature on the day of mating. Conclusions were that conception rate was not compromised in non-lactating Alpine, Toggenburg, Granadino and Nubian goats subjected to high environmental temperature in an arid region, but the occurrence of rain at mating depressed breeding efficiency of these animals. Additionally, an increment in litter size is expected with cooler temperatures before or after hot days at time of mating.


2012 ◽  
Vol 516-517 ◽  
pp. 395-400
Author(s):  
Zhong Yi Yu ◽  
Yan Hua Chen ◽  
Min Rui Zhou ◽  
Jian Ping Lei

This paper progresses to dynamically simulate and study the heat transfer process of horizontal ground heat exchangers in the multi-grooves by the use of numerical simulation based on the layout and heat extraction or rejection conditions of horizontal ground heat exchangers under the artificial lake. Effect of buried pipe type and groove spacing on the heat exchanger process is analyzed in detail. The influence of annual average water temperature change on the surrounding environment is evaluated with the introduction of parameters including summer weekly average maximum temperature rise and winter weekly average maximum temperature drop, in which can take the technical supports for the design of horizontal ground source heat pump system.


Author(s):  
M. Cüneyt Bagdatlı ◽  
Yiğitcan Ballı

This research was conducted to determine soil temperatures in different soil depths in located Turkey’s Anatolia Region in Center of Nigde Province. In the study, the maximum, minimum and average soil temperature values of 10 cm, 50 cm and 100 cm depths observed between 1970-2019 were examined. All soil temperature data were evaluated monthly within the scope of the study. In the study, Mann-Kendall, Sperman's Rho correlation test and Sen's slope method were used.  According to the research result; The average of maximum soil temperatures in 10 cm depth was calculated as 6,8 0C in winter months and 20,7 0C in spring months. The average minimum soil temperature was calculated as 0,3 0C in winter and 5,0 0C in spring Months in long periods Generally, it was observed that there was an increasingly significant trend at maximum temperatures of 10 cm depth. According to the Mann-Kendal facility, a significant increase trend was observed in minimum soil temperatures in spring, winter and Summer months except for the months of autumn. Considering the average maximum temperature values in 50 cm; It was calculated as 6,6 °C in winter and 13,6 °C in spring months. The minimum soil temperature average was calculated as 3,5 0C in winter and 8,3 0C in spring months in long period (50 year, 600 months). In general, it was observed that there was an increasingly significant trend at maximum temperatures of 50 cm soil depth. According to Mann-Kendall and Sperman Rho test, a significant increase trend was observed in minimum soil temperatures in all seasons except for autumn months. According to the average maximum temperature values in 100 cm depth; It was calculated as 9,2 0C in winter and 11,5 0C in spring. The minimum soil temperature average was calculated as 7,1 0C in winter and 8.7 0C in spring months. It has been observed that there is a significant increase trend in the increasing of maximum and minimum soil temperatures of 100 cm soil depth.


2021 ◽  
Vol 22 (2) ◽  
pp. 191-197
Author(s):  
K. PHILIP ◽  
S.S. ASHA DEVI ◽  
G.K. JHA ◽  
B.M.K. RAJU ◽  
B. SEN ◽  
...  

The impact of climate change on agriculture is well studied yet there is scope for improvement as crop specific and location specific impacts need to be assessed realistically to frame adaptation and mitigation strategies to lessen the adverse effects of climate change. Many researchers have tried to estimate potential impact of climate change on wheat yields using indirect crop simulation modeling techniques. Here, this study estimated the potential impact of climate change on wheat yields using a crop specific panel data set from 1981 to 2010,for six major wheat producing states. The study revealed that 1°C increase in average maximum temperature during the growing season reduces wheat yield by 3 percent. Major share of wheat growth and yield (79%) is attributed to increase in usage of physical inputs specifically fertilizers, machine labour and human labour. The estimated impact was lesser than previously reported studies due to the inclusion of wide range of short-term adaptation strategies to climate change. The results reiterate the necessity of including confluent factors like physical inputs while investigating the impact of climate factors on crop yields.


Sign in / Sign up

Export Citation Format

Share Document