Effect of the acceleration component normal to the sliding surface on earthquake-induced landslide triggering

Landslides ◽  
2014 ◽  
Vol 12 (2) ◽  
pp. 335-344 ◽  
Author(s):  
Ren-mao Yuan ◽  
Chao-Lung Tang ◽  
Qing-hai Deng
2019 ◽  
Vol 1 (2) ◽  
pp. 73-80
Author(s):  
Ilangkumaran M ◽  
Tiruvenkadam N ◽  
Saranya M ◽  
Thulsidharan R

Where is the abrasive or gradual removal of materials at solid surfaces? It is caused due to the interaction between the sliding surface by mechanical action. The abrasive wears can be recognised as scratches or grooves. To enhance the wear resistance suitable nanocoating is applied on the material surface for better tribological properties such as hardness and toughness. Wear resistant nanocoating is used to reduce or eradicate wear to extend the lifetime of the EN8 steel. EN8 is unalloyed medium carbon steel with better mechanical properties than mild steel and also readily machinable in any condition. The nanocoating materials such as Al2O3, TiO2, SiC, ZrO2, WS2, Si3N4 etc., are used to reduce wear and to enhance hardness and toughness on mild steel through various nanocoating techniques. This paper deals with selection of suitable nanocoating material through AHP (Analytical hierarchal process) - a multi-criteria decision-making method.


2019 ◽  
pp. 101-109 ◽  
Author(s):  
M. I. Aleutdinova ◽  
V. V. Fadin ◽  
Yu. P. Mironov

The possibility of creating a wear-resistant dry sliding electrical contact tungsten/steel was studied. It was shown that tungsten caused severe wear of the quenched steel counterbody due to unlimited plastic flow of its surface layer at a current density up to 150 A/cm2 . This indicated the impossibility of achieving satisfactory characteristics of such a contact. Low electrical conductivity and wear resistance of the contact tungsten/steel were presented in comparison with the known high copper/steel contact characteristics under the same conditions. X-ray phase analysis data of the steel sliding surfaces made it possible to state that the cause of the unsatisfactory sliding of tungsten was the absence of the necessary concentration of FeO oxide on the sliding surface of the steel. 


2021 ◽  
Vol 11 (12) ◽  
pp. 5447
Author(s):  
Xiaona Zhang ◽  
Gang Mei ◽  
Ning Xi ◽  
Ziyang Liu ◽  
Ruoshen Lin

The discrete element method (DEM) can be effectively used in investigations of the deformations and failures of jointed rock slopes. However, when to appropriately terminate the DEM iterative process is not clear. Recently, a displacement-based discrete element modeling method for jointed rock slopes was proposed to determine when the DEM iterative process is terminated, and it considers displacements that come from rock blocks located near the potential sliding surface that needs to be determined before the DEM modeling. In this paper, an energy-based discrete element modeling method combined with time-series analysis is proposed to investigate the deformations and failures of jointed rock slopes. The proposed method defines an energy-based criterion to determine when to terminate the DEM iterative process in analyzing the deformations and failures of jointed rock slopes. The novelty of the proposed energy-based method is that, it is more applicable than the displacement-based method because it does not need to determine the position of the potential sliding surface before DEM modeling. The proposed energy-based method is a generalized form of the displacement-based discrete element modeling method, and the proposed method considers not only the displacement of each block but also the weight of each block. Moreover, the computational cost of the proposed method is approximately the same as that of the displacement-based discrete element modeling method. To validate that the proposed energy-based method is effective, the proposed method is used to analyze a simple jointed rock slope; the result is compared to that achieved by using the displacement-based method, and the comparative results are basically consistent. The proposed energy-based method can be commonly used to analyze the deformations and failures of general rock slopes where it is difficult to determine the obvious potential sliding surface.


Landslides ◽  
2021 ◽  
Author(s):  
Bastian Morales ◽  
Elizabet Lizama ◽  
Marcelo A. Somos-Valenzuela ◽  
Mario Lillo-Saavedra ◽  
Ningsheng Chen ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3811
Author(s):  
Katarzyna Adamiak ◽  
Andrzej Bartoszewicz

This study considers the problem of energetical efficiency in switching type sliding mode control of discrete-time systems. The aim of this work is to reduce the quasi-sliding mode band-width and, as follows, the necessary control input, through an application of a new type of time-varying sliding hyperplane in quasi-sliding mode control of sampled time systems. Although time-varying sliding hyperplanes are well known to provide insensitivity to matched external disturbances and uncertainties of the model in the whole range of motion for continuous-time systems, their application in the discrete-time case has never been studied in detail. Therefore, this paper proposes a sliding surface, which crosses the system’s representative point at the initial step and then shifts in the state space according to the pre-generated demand profile of the sliding variable. Next, a controller for a real perturbed plant is designed so that it drives the system’s representative point to its reference position on the sliding plane in each step. Therefore, the impact of external disturbances on the system’s trajectory is minimized, which leads to a reduction of the necessary control effort. Moreover, thanks to a new reaching law applied in the reference profile generator, the sliding surface shift in each step is strictly limited and a switching type of motion occurs. Finally, under the assumption of boundedness and smoothness of continuous-time disturbance, a compensation scheme is added. It is proved that this control strategy reduces the quasi-sliding mode band-width from O(T) to O(T3) order from the very beginning of the regulation process. Moreover, it is shown that the maximum state variable errors become of O(T3) order as well. These achievements directly reduce the energy consumption in the closed-loop system, which is nowadays one of the crucial factors in control engineering.


2021 ◽  
Vol 11 (4) ◽  
pp. 1873
Author(s):  
José Robinson Ortiz-Castrillón ◽  
Gabriel Eduardo Mejía-Ruiz ◽  
Nicolás Muñoz-Galeano ◽  
Jesús María López-Lezama ◽  
Juan Bernardo Cano-Quintero

This paper proposes a new sliding surface for controlling a Semi-Bridgeless Boost Converter (SBBC) which simultaneously performs Power Factor Correction (PFC) and DC bus regulation. The proposed sliding surface is composed of three terms: First, a normalized DC voltage error term controls the DC bus and rejects DC voltage disturbances. In this case, the normalization was performed for increasing system robustness during start-up and large disturbances. Second, an AC current error term implements a PFC scheme and guarantees fast current stabilization during disturbances. Third, an integral of the AC current error term increases stability of the overall system. In addition, an Adaptive Hysteresis Band (AHB) is implemented for keeping the switching frequency constant and reducing the distortion in zero crossings. Previous papers usually include the first and/or the second terms of the proposed sliding surface, and none consider the AHB. To be best of the author’s knowledge, the proposed Sliding Mode Control (SMC) is the first control strategy for SBBCs that does not require a cascade PI or a hybrid PI-Sliding Mode Control (PI-SMC) for simultaneously controlling AC voltage and DC current, which gives the best dynamic behavior removing DC overvoltages and responding fast to DC voltage changes or DC load current perturbations. Several simulations were carried out to compare the performance of the proposed surface with a cascade PI control, a hybrid PI-SMC and the proposed SMC. Furthermore, a stability analysis of the proposed surface in start-up and under large perturbations was performed. Experimental results for PI-SMC and SMC implemented in a SBBC prototype are also presented.


2021 ◽  
pp. 107754632198920
Author(s):  
Zeinab Fallah ◽  
Mahdi Baradarannia ◽  
Hamed Kharrati ◽  
Farzad Hashemzadeh

This study considers the designing of the H ∞ sliding mode controller for a singular Markovian jump system described by discrete-time state-space realization. The system under investigation is subject to both matched and mismatched external disturbances, and the transition probability matrix of the underlying Markov chain is considered to be partly available. A new sufficient condition is developed in terms of linear matrix inequalities to determine the mode-dependent parameter of the proposed quasi-sliding surface such that the stochastic admissibility with a prescribed H ∞ performance of the sliding mode dynamics is guaranteed. Furthermore, the sliding mode controller is designed to assure that the state trajectories of the system will be driven onto the quasi-sliding surface and remain in there afterward. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design algorithms.


Sign in / Sign up

Export Citation Format

Share Document