Experimental studies on the interaction mechanism of landslide stabilizing piles and sandwich-type bedrock

Landslides ◽  
2020 ◽  
Author(s):  
Zhen Zhong ◽  
Rui Yong ◽  
Huiming Tang ◽  
Changdong Li ◽  
Shigui Du
2011 ◽  
Vol 36 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Sylwia Muc ◽  
Tadeusz Gudra

Abstract The possibility of acoustic wave propagation in optical waveguides creates new prospects for simultaneous transmission of laser beams and ultrasonic waves. Combined laser-ultrasonic technology could be useful in e.g. surgical treatment. The article presents the results of experimental studies of transmission of ultrasonic wave in optical fibres, the core of which is doped by 7.5% of TiO2, using a sandwich-type transducer. It also presents amplitude characteristics of an ultrasonic signal propagated in the optical fibre. Authors studied the effect which the length of the fibre has on the achieved output signal amplitudes. They presented the relation of the output signal amplitude from a capacitive sensor to the power applied to the sandwich-type transducer. The obtained results were compared with the results produced when using an optical fibre with a core doped by 3% of GeO2, in order to select optical fibre suitable for simultaneous transmission of ultrasonic waves and laser rays.


2000 ◽  
Vol 415 ◽  
pp. 65-87 ◽  
Author(s):  
A. JAVAM ◽  
J. IMBERGER ◽  
S. W. ARMFIELD

A finite volume method is used to study the generation, propagation and interaction of internal waves in a linearly stratified fluid. The internal waves were generated using single and multiple momentum sources. The full unsteady equations of motion were solved using a SIMPLE scheme on a non-staggered grid. An open boundary, based on the Sommerfield radiation condition, allowed waves to propagate through the computational boundaries with minimum reflection and distortion. For the case of a single momentum source, the effects of viscosity and nonlinearity on the generation and propagation of internal waves were investigated.Internal wave–wave interactions between two wave rays were studied using two momentum sources. The rays generated travelled out from the sources and intersected in interaction regions where nonlinear interactions caused the waves to break. When two rays had identical properties but opposite horizontal phase velocities (symmetric interaction), the interactions were not described by a triad interaction mechanism. Instead, energy was transferred to smaller wavelengths and, a few periods later, to standing evanescent modes in multiples of the primary frequency (greater than the ambient buoyancy frequencies) in the interaction region. The accumulation of the energy caused by these trapped modes within the interaction region resulted in the overturning of the density field. When the two rays had different properties (apart from the multiples of the forcing frequencies) the divisions of the forcing frequencies as well as the combination of the different frequencies were observed within the interaction region.The model was validated by comparing the results with those from experimental studies. Further, the energy balance was conserved and the dissipation of energy was shown to be related to the degree of nonlinear interaction.


1988 ◽  
pp. 243-252
Author(s):  
Toshihisa ADACHI ◽  
Makoto KIMURA ◽  
Satoshi TADA

2009 ◽  
Vol 3 ◽  
pp. PMC.S2332 ◽  
Author(s):  
Yoshiyuki Suzuki ◽  
Seiichiro Ogawa ◽  
Yasubumi Sakakibara

Chaperone therapy is a newly developed molecular approach to lysosomal diseases, a group of human genetic diseases causing severe brain damage. We found two valienamine derivatives, N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV), as promising therapeutic agents for human β-galactosidase deficiency disorders (mainly GM1-gangliosidosis) and β-glucosidase deficiency disorders (Gaucher disease), respectively. We briefly reviewed the historical background of research in carbasugar glycosidase inhibitors. Originally NOEV and NOV had been discovered as competitive inhibitors, and then their paradoxical bioactivities as chaperones were confirmed in cultured fibroblasts from patients with these disorders. Subsequently GM1-gangliosidosis model mice were developed and useful for experimental studies. Orally administered NOEV entered the brain through the blood-brain barrier, enhanced β-galactosidase activity, reduced substrate storage, and improved neurological deterioration clinically. Furthermore, we executed computational analysis for prediction of molecular interactions between β-galactosidase and NOEV. Some preliminary results of computational analysis of molecular interaction mechanism are presented in this article. NOV also showed the chaperone effect toward several β-glucosidase gene mutations in Gaucher disease. We hope chaperone therapy will become available for some patients with GM1-gangliosidosis, Gaucher disease, and potentially other lysosomal storage diseases with central nervous system involvement.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 59
Author(s):  
Hikmet Hakan Gürel ◽  
Bahadır Salmankurt

Over the last decade, we have been witnessing the rise of two-dimensional (2D) materials. Several 2D materials with outstanding properties have been theoretically predicted and experimentally synthesized. 2D materials are good candidates for sensing and detecting various biomolecules because of their extraordinary properties, such as a high surface-to-volume ratio. Silicene and germanene are the monolayer honeycomb structures of silicon and germanium, respectively. Quantum simulations have been very effective in understanding the interaction mechanism of 2D materials and biomolecules and may play an important role in the development of effective and reliable biosensors. This article focuses on understanding the interaction of DNA/RNA nucleobases with silicene and germanane monolayers and obtaining the possibility of using silicene and germanane monolayers as a biosensor for DNA/RNA nucleobases’ sequencing using the first principle of Density Functional Theory (DFT) calculations with van der Waals (vdW) correction and nonequilibrium Green’s function method. Guanine (G), Cytosine (C), Adenine (A), Thymine (T), and Uracil (U) were examined as the analytes. The strength of adsorption between the DNA/RNA nucleobases and silicene and germanane is G > C > A > T > U. Moreover, our recent work on the investigation of Au- and Li-decorated silicene and germanane for detection of DNA/RNA nucleobases is presented. Our results show that it is possible to get remarkable changes in transmittance due to the adsorption of nucleobases, especially for G, A, and C. These results indicate that silicene and germanene are both good candidates for the applications in fast sequencing devices for DNA/RNA nucleobases. Additionally, our present results have the potential to give insight into experimental studies and can be valuable for advancements in biosensing and nanobiotechnology.


Author(s):  
Kent McDonald ◽  
David Mastronarde ◽  
Rubai Ding ◽  
Eileen O'Toole ◽  
J. Richard McIntosh

Mammalian spindles are generally large and may contain over a thousand microtubules (MTs). For this reason they are difficult to reconstruct in three dimensions and many researchers have chosen to study the smaller and simpler spindles of lower eukaryotes. Nevertheless, the mammalian spindle is used for many experimental studies and it would be useful to know its detailed structure.We have been using serial cross sections and computer reconstruction methods to analyze MT distributions in mitotic spindles of PtK cells, a mammalian tissue culture line. Images from EM negatives are digtized on a light box by a Dage MTI video camera containing a black and white Saticon tube. The signal is digitized by a Parallax 1280 graphics device in a MicroVax III computer. Microtubules are digitized at a magnification such that each is 10-12 pixels in diameter.


Author(s):  
Ina Grau ◽  
Jörg Doll

Abstract. Employing one correlational and two experimental studies, this paper examines the influence of attachment styles (secure, anxious, avoidant) on a person’s experience of equity in intimate relationships. While one experimental study employed a priming technique to stimulate the different attachment styles, the other involved vignettes describing fictitious characters with typical attachment styles. As the specific hypotheses about the single equity components have been developed on the basis of the attachment theory, the equity ratio itself and the four equity components (own outcome, own input, partner’s outcome, partner’s input) are analyzed as dependent variables. While partners with a secure attachment style tend to describe their relationship as equitable (i.e., they give and take extensively), partners who feel anxious about their relationship generally see themselves as being in an inequitable, disadvantaged position (i.e., they receive little from their partner). The hypothesis that avoidant partners would feel advantaged as they were less committed was only supported by the correlational study. Against expectations, the results of both experiments indicate that avoidant partners generally see themselves (or see avoidant vignettes) as being treated equitably, but that there is less emotional exchange than is the case with secure partners. Avoidant partners give and take less than secure ones.


Sign in / Sign up

Export Citation Format

Share Document