scholarly journals High Resolution Micro-Computed Tomography Reveals a Network of Collagen Channels in the Body Region of the Knee Meniscus

Author(s):  
Greta Agustoni ◽  
Jared Maritz ◽  
James Kennedy ◽  
Francesco P. Bonomo ◽  
Stéphane P. A. Bordas ◽  
...  

AbstractThe meniscus is an integral part of the human knee, preventing joint degradation by distributing load from the femoral condyles to the tibial plateau. Recent qualitative studies suggested that the meniscus is constituted by an intricate net of collagen channels inside which the fluid flows during loading. The aim of this study is to describe in detail the structure in which this fluid flows by quantifying the orientation and morphology of the collagen channels of the meniscal tissue. A 7 mm cylindrical sample, extracted vertically from the central part of a lateral porcine meniscus was freeze-dried and scanned using the highest-to-date resolution Microscopic Computed Tomography. The orientation of the collagen channels, their size and distribution was calculated. Comparisons with confocal multi-photon microscopy imaging performed on portions of fresh tissue have shown that the freeze-dried procedure adopted here ensures that the native architecture of the tissue is maintained. Sections of the probe at different heights were examined to determine differences in composition and structure along the sample from the superficial to the internal layers. Results reveal a different arrangement of the collagen channels in the superficial layers with respect to the internal layers with the internal layers showing a more ordered structure of the channels oriented at 30$$^{\circ }$$ ∘ with respect to the vertical, a porosity of 66.28% and the mean size of the channels of 22.14 $$\mu {\text {m}}$$ μ m .

Author(s):  
Desi Sandra Sari ◽  
Fourier Dzar Eljabbar Latief ◽  
Ferdiansyah ◽  
Ketut Sudiana ◽  
Fedik Abdul Rantam

The tissue engineering approach for periodontal tissue regeneration using a combination of stem cells and scaffold has been vastly developed. Mesenchymal Stem Cells (MSCs) seeded with Bovine Teeth Scaffold (BTSc) can repair alveolar bone damage in periodontitis cases. The alveolar bone regeneration process was analyzed by micro-computed tomography (µ-CT) to observe the structure of bone growth and to visualize the scaffold in 3-Dimensional (3D). The purpose of this study is to analyze alveolar bone regeneration by µ-CT following the combination of MSCs and bovine teeth scaffold (MSCs-BTSc) implantation in the Wistar rat periodontitis model. Methods. MSCs were cultured from adipose-derived mesenchymal stem cells of rats. BTSc was taken from bovine teeth and freeze-dried with a particle size of 150-355 µm. MSCs were seeded on BTSc for 24 hours and transplanted in a rat model of periodontitis. Thirty-five Wistar rats were made as periodontitis models with LPS induction from P. gingivalis injected to the buccal section of interproximal gingiva between the first and the second mandibular right-molar teeth for six weeks. There were seven groups (control group, BTSc group on day 7, BTSc group on day 14, BTSc group on day 28, MSCs-BTSc group on day 7, MSCs-BTSc group on day 14, MSCs-BTSc group on day 28). The mandibular alveolar bone was analyzed and visualized in 3D with µ-CT to observe any new bone growth. Statistical Analysis. Group data were subjected to the Kruskal Wallis test followed by the Mann-Whitney (p <0.05). The µ-CT qualitative analysis shows a fibrous structure, which indicates the existence of new bone regeneration. Quantitative analysis of the periodontitis model showed a significant difference between the control model and the model with the alveolar bone resorption (p <0.05). The bone volume and density measurements revealed that the MSCs-BTSc group on day 28 formed new bone compared to other groups (p <0.05). Administration of MSCs-BTSc combination has the potential to form new alveolar bone.


2019 ◽  
Vol 2 ◽  
Author(s):  
Francesco Simone Mensa ◽  
Federica Spani ◽  
Andrea Di Giulio

The genus Paussus is a highly specialized, charismatic group of ground beetles (Carabidae) classified in the subfamily Paussinae. All species of Paussus are obligate myrmecophiles (associates of ants). As with many other myrmecophilous or termitophilous beetles, Paussus have undergone extreme phenotypic adaptations for life with ants, at the level of head, antennae, and prothorax. Host data suggest that Paussus species are likely to be species-specific ant parasites, and the structural modifications of antennae and other body parts are likely under selection by their host ants. Investigating anatomical structures have been fundamental to better understand living organisms, and their interplay with the surrounding environment, which could induce significant morphological variation. In the last few years, bio-imaging techniques paired with geometric morphometrics (GM) overcame the limits of traditional anatomical studies, becoming widely non-invasive and highly informative for both internal and external characters. The use of Computed Tomography (CT) scanners definitively allowed to advance in the knowledge of either known or neglected biological structures. For this project, we used X-ray micro-computed tomography, in order to acquire 2D serial, cross-sections of various paussines samples, with a resolution between 0.954 and 2.44 micrometers. The 2D images in high resolution are then processed using a high-performance computer system and Thermo Scientific™ Amira™ Software and Thermo Scientific™ Avizo™ Software for the reconstruction of 3D models. With these models, we will be able to conduct a morphological study of the most variable parts in the body of the genus Paussus using 3D geometric morphometrics (3D GM), as these integrative techniques allows to describe in a quantitative way even subtle differences between structures, so as to determine whether the striking diversity of phenotypes is caused by the host or by other factors, overlapping the results obtained with the molecular part of phylogeny. These innovative practices help to deepen the meaning of shape in insect biology, from both structural and evolutionary views. They will allow, in particular, to describe the relationship between phylogeny and functional morphology in the extremely variable species of the subfamily Paussinae.


2020 ◽  
Vol 60 (1) ◽  
pp. 67
Author(s):  
Hamed Akhondzadeh ◽  
Alireza Keshavarz ◽  
Faisal Ur Rahman Awan ◽  
Ahmed Z. Al-Yaseri ◽  
Stefan Iglauer ◽  
...  

Low permeability of coal has been a constant obstacle to economic production from coalbed methane reservoirs, and liquid nitrogen (LN2) treatment has been investigated as one approach to address this issue. This study examined LN2 fracturing of a bituminous coal at pore-scale through 3D X-ray micro-computed tomography. For this purpose, a cylindrical sample was immersed into LN2 for 60 min. The micro-CT results clearly showed that the rapid freezing of the coal with LN2 generated fracture planes with large apertures originating from the pre-existing cleats in the rock. This treatment also connected original cleats with originally isolated pores and micro-cleats, thereby increasing pore network connectivity. Moreover, scanning electron microscopy highlighted the appearance of continuous wide conductive fractures with a maximum opening size of 9 µm. Furthermore, a nano-indentation technique was used to test the effect of LN2 on coal mechanical properties. The indentation moduli decreased by up to 14%, which was attributed to the increase in the cracked rock compressibility, showing considerable fracturing efficiency of the LN2 treatment. Through in-situ microscopic visualisation and surface investigation, this study quantified the pore structure and connectivity evolution of the rock based on the morphological alteration, and demonstrated the promising effect of LN2 freezing on fracturing of bituminous coals, thus aiding coalbed methane production. The significance of this study was investigating the mechanisms associated with and the efficiency of LN2 treatment of a coal rock in a 3D analysis inside the rock.


2018 ◽  
Vol 98 (3) ◽  
pp. 363-367 ◽  
Author(s):  
J. Kim ◽  
T.J. Shin ◽  
H.J. Kong ◽  
J.Y. Hwang ◽  
H.K. Hyun

The extent of dental tissue destruction during the treatment of white spot lesions (WSLs) increases with the severity of the lesion. If the depth and shape of WSLs can be predicted with a noninvasive diagnostic method before dental caries treatment, more conservative interventions can be planned. Given the superiority of high-frequency ultrasound (HFUS) imaging in observing the internal structures of the body, the present study aimed to verify the possibility of HFUS imaging to examine the depth and shape of WSLs. We prepared tooth samples and developed a biomicroscopic system with a HFUS transducer to obtain images of normal and WSL regions. HFUS images were compared with conventional ultrasound images and micro–computed tomography images. HFUS distinctly differentiated demineralization within WSL and normal regions. WSL depth calculated in the micro–computed tomography image was similar to that in HFUS. This study revealed that HFUS imaging has the potential to detect early dental caries and offer information on the invasion depth of early dental caries quantitatively.


1984 ◽  
Vol 20 (3) ◽  
pp. 697
Author(s):  
Y J Yoon ◽  
H S Suh ◽  
J S Lee ◽  
S M Hong ◽  
S Y Chung ◽  
...  
Keyword(s):  

2013 ◽  
Author(s):  
Agnes Ostertag ◽  
Francoise Peyrin ◽  
Sylvie Fernandez ◽  
Jean-Denis Laredo ◽  
Vernejoul Marie-Christine De ◽  
...  

2020 ◽  
Vol 45 (3) ◽  
pp. 478-482
Author(s):  
Steven R. Manchester

Abstract—The type material on which the fossil genus name Ampelocissites was established in 1929 has been reexamined with the aid of X-ray micro-computed tomography (μ-CT) scanning and compared with seeds of extant taxa to assess the relationships of these fossils within the grape family, Vitaceae. The specimens were collected from a sandstone of late Paleocene or early Eocene age. Although originally inferred by Berry to be intermediate in morphology between Ampelocissus and Vitis, the newly revealed details of seed morphology indicate that these seeds represent instead the Ampelopsis clade. Digital cross sections show that the seed coat maintains its thickness over the external surfaces, but diminishes quickly in the ventral infolds. This feature, along with the elliptical chalaza and lack of an apical groove, indicate that Ampelocissites lytlensis Berry probably represents Ampelopsis or Nekemias (rather than Ampelocissus or Vitis) and that the generic name Ampelocissites may be useful for fossil seeds with morphology consistent with the Ampelopsis clade that lack sufficient characters to specify placement within one of these extant genera.


Sign in / Sign up

Export Citation Format

Share Document