Phylogenetic affiliation of the desert truffles Picoa juniperi and Picoa lefebvrei

2010 ◽  
Vol 98 (4) ◽  
pp. 429-436 ◽  
Author(s):  
Imed Sbissi ◽  
Mohamed Neffati ◽  
Abdellatif Boudabous ◽  
Claude Murat ◽  
Maher Gtari
2017 ◽  
Vol 19 (2) ◽  
pp. 121-125 ◽  
Author(s):  
Domenico Schillaci ◽  
Maria Grazia Cusimano ◽  
Stella Maria Cascioferro ◽  
Vita Di Stefano ◽  
Vincenzo Arizza ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Evdoxia Efstathiadou ◽  
Georgia Ntatsi ◽  
Dimitrios Savvas ◽  
Anastasia P. Tampakaki

AbstractPhaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.


2021 ◽  
Vol 166 ◽  
pp. 104069
Author(s):  
Emiliano Foresto ◽  
Fiorela Nievas ◽  
Santiago Revale ◽  
Walter Giordano ◽  
Pablo Bogino

LWT ◽  
2021 ◽  
pp. 111965
Author(s):  
Reham S. Darwish ◽  
Eman Shawky ◽  
Khallad M. Nassar ◽  
Ramez M. Rashad ElSayed ◽  
Dalia E. Hussein ◽  
...  

2007 ◽  
Vol 57 (12) ◽  
pp. 2908-2911 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Seon-Young Lee ◽  
Byung-Yong Kim ◽  
Hyung-Jun Noh ◽  
Peter Schumann ◽  
...  

Two Gram-negative, rod-shaped, thermophilic bacterial strains, HC145T and HC148T, were isolated from a compost sample from a compost facility in Ichon, Korea. Sequencing of the 16S rRNA genes of HC145T and HC148T and comparative analyses of the resulting sequences clearly showed that these strains had a phylogenetic affiliation to the genus Ureibacillus. The level of 16S rRNA similarity between the two novel strains was 98.4 % and the levels of sequence similarity between them and existing Ureibacillus species were 97.8–98.1 (HC145T) and 97.4–98.7 % (HC148T). The DNA–DNA reassociation values between the two strains and the type strains of Ureibacillus species ranged from 38 to 51 %. The polar lipid profiles for both isolates consisted of phosphatidylglycerol, diphosphatidylglycerol, phospholipids and glycolipids of unknown composition. The major quinones were MK-8, MK-9 and MK-7, the peptidoglycan type was l-Lys←d-Asp and the main cellular fatty acid was iso-C16 : 0. The DNA G+C contents of strains HC145T and HC148T were 42.4 and 38.5 mol%, respectively. On the basis of the data from this polyphasic study, strains HC145T and HC148T represent members of the genus Ureibacillus, for which the names Ureibacillus composti sp. nov. and Ureibacillus thermophilus sp. nov., respectively, are proposed. The type strain of U. composti is HC145T (=KACC 11361T =DSM 17951T) and the type strain of U. thermophilus is HC148T (=KACC 11362T =DSM 17952T).


2001 ◽  
Vol 67 (11) ◽  
pp. 5273-5284 ◽  
Author(s):  
Holger Daims ◽  
Jeppe L. Nielsen ◽  
Per H. Nielsen ◽  
Karl-Heinz Schleifer ◽  
Michael Wagner

ABSTRACT Uncultivated Nitrospira-like bacteria in different biofilm and activated-sludge samples were investigated by cultivation-independent molecular approaches. Initially, the phylogenetic affiliation of Nitrospira-like bacteria in a nitrifying biofilm was determined by 16S rRNA gene sequence analysis. Subsequently, a phylogenetic consensus tree of theNitrospira phylum including all publicly available sequences was constructed. This analysis revealed that the genusNitrospira consists of at least four distinct sublineages. Based on these data, two 16S rRNA-directed oligonucleotide probes specific for the phylum and genus Nitrospira, respectively, were developed and evaluated for suitability for fluorescence in situ hybridization (FISH). The probes were used to investigate the in situ architecture of cell aggregates ofNitrospira-like nitrite oxidizers in wastewater treatment plants by FISH, confocal laser scanning microscopy, and computer-aided three-dimensional visualization. Cavities and a network of cell-free channels inside the Nitrospiramicrocolonies were detected that were water permeable, as demonstrated by fluorescein staining. The uptake of different carbon sources byNitrospira-like bacteria within their natural habitat under different incubation conditions was studied by combined FISH and microautoradiography. Under aerobic conditions, theNitrospira-like bacteria in bioreactor samples took up inorganic carbon (as HCO3 − or as CO2) and pyruvate but not acetate, butyrate, and propionate, suggesting that these bacteria can grow mixotrophically in the presence of pyruvate. In contrast, no uptake by theNitrospira-like bacteria of any of the carbon sources tested was observed under anoxic or anaerobic conditions.


2021 ◽  
Author(s):  
Carlos Aguilar-Trigueros ◽  
Mark Fricker ◽  
Matthias Rillig

<p>Fungal mycelia consist of an interconnected network of filamentous hyphae and represent the dominant phase of the lifecycle in all major fungal phyla, from basal to more recent clades. Indeed, the ecological success of fungi on land is partly due to such filamentous network growth. Nevertheless, fungal ecologists rarely use network features as functional traits. Given the widespread occurrence of this body type, we hypothesized that interspecific variation in network features may reflect both phylogenetic affiliation and distinct ecological strategies among species. We show first that there is high interspecific variation in network parameters of fungi, which partly correlates with taxonomy; and second that network parameters, related to predicted-mycelial transport mechanisms during the exploration phase, reveal the trait space in mycelium architecture across species.  This space predicts a continuum of ecological strategies along two extremes: from highly connected mycelia with high resilience to damage but limited transport efficiency, to poorly connected mycelia with low resilience but high transport efficiency. We argue that mycelial networks are potentially a rich source of information to inform functional trait analysis in fungi, but we also note the challenges in establishing common principles and processing pipelines that are required to facilitate widespread use of network properties as functional traits in fungal ecology.</p>


2003 ◽  
Vol 48 (3) ◽  
pp. 17-24 ◽  
Author(s):  
A.K. Rowan ◽  
G. Moser ◽  
N. Gray ◽  
J.R. Snape ◽  
D. Fearnside ◽  
...  

The diversity and community structure of the b-proteobacterial ammonia oxidising bacteria (AOB) in a range of different lab-scale industrial wastewater treatment reactors were compared. Three of the reactors treat waste from mixed domestic and industrial sources whereas the other reactor treats waste solely of industrial origin. PCR with AOB selective primers was combined with denaturing gradient gel electrophoresis to allow comparative analysis of the dominant AOB populations and the phylogenetic affiliation of the dominant AOB was determined by cloning and sequencing or direct sequencing of bands excised from DGGE gels. Different AOB were found within and between different reactors. All AOB sequences identified were grouped within the genus Nitrosomonas. Within the lab-scale reactors there appeared to be selection for a low diversity of AOB and predominance of a single AOB population. Furthermore, the industrial input in both effluents apparently selected for salt tolerant AOB, most closely related to Nitrosococcus mobilis and Nitrosomonas halophila.


2020 ◽  
Vol 9 (5) ◽  
Author(s):  
Clémence Beauruelle ◽  
Maxime Branger ◽  
Thierry Cochard ◽  
Adeline Pastuszka ◽  
Franck Biet ◽  
...  

Streptococcus agalactiae is a major pathogen and is the leading cause of neonatal infections in industrialized countries. The diversity of strains isolated from two pregnant women was investigated. Here, we present the draft genome sequences of strains W8A2, W8A6, W10E2, and W10F3, obtained in order to ascertain their phylogenetic affiliation.


Sign in / Sign up

Export Citation Format

Share Document