scholarly journals d-Galactose-induced oxidative stress and mitochondrial dysfunction in the cochlear basilar membrane: an in vitro aging model

2020 ◽  
Vol 21 (3) ◽  
pp. 311-323 ◽  
Author(s):  
Bin Guo ◽  
Qing Guo ◽  
Zhan Wang ◽  
Jian-Bo Shao ◽  
Ke Liu ◽  
...  
Author(s):  
Sicong Yu ◽  
Lepeng Gao ◽  
Yang Song ◽  
Xin Ma ◽  
Shuang Liang ◽  
...  

Abstract Mitochondria play an important role in controlling oocyte developmental competence. Our previous studies showed that glycine can regulate mitochondrial function and improve oocyte maturation in vitro. However, the mechanisms by which glycine affects mitochondrial function during oocyte maturation in vitro have not been fully investigated. In this study, we induced a mitochondrial damage model in oocytes with the Bcl-2-specific antagonist ABT-199. We investigated whether glycine could reverse the mitochondrial dysfunction induced by ABT-199 exposure and whether it is related to calcium regulation. Our results showed that ABT-199 inhibited cumulus expansion, decreased the oocyte maturation rate and the intracellular glutathione (GSH) level, caused mitochondrial dysfunction, induced oxidative stress, which was confirmed by decreased mitochondrial membrane potential (Δ⍦m) and the expression of mitochondrial function-related genes (PGC-1α), and increased reactive oxygen species (ROS) levels and the expression of apoptosis-associated genes (Bax, caspase-3, CytC). More importantly, ABT-199-treated oocytes showed an increase in the intracellular free calcium concentration ([Ca 2+]i) and had impaired cortical type 1 inositol 1,4,5-trisphosphate receptors (IP3R1) distribution. Nevertheless, treatment with glycine significantly ameliorated mitochondrial dysfunction, oxidative stress and apoptosis, glycine also regulated [Ca 2+]i levels and IP3R1 cellular distribution, which further protects oocyte maturation in ABT-199-induced porcine oocytes. Taken together, our results indicate that glycine has a protective action against ABT-199-induced mitochondrial dysfunction in porcine oocytes.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 375
Author(s):  
Jin Young Hong ◽  
Hyunseong Kim ◽  
Junseon Lee ◽  
Wan-Jin Jeon ◽  
Seung Ho Baek ◽  
...  

Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Meixia Chen ◽  
Jie Li ◽  
Bo Zhang ◽  
Xiangfang Zeng ◽  
Xiangzhou Zeng ◽  
...  

Scope. Implantation loss is a considerable cause of early pregnancy loss in humans and mammalian animals. It is not addressed how proliferative uterine defects implicate in implantation loss. Methods and Results. Herein, a comprehensive proteomic analysis was conducted on proliferative endometria from sows with low and normal reproductive performance (LRP and NRP, respectively). Enrichment analysis of differentially expressed proteins revealed alterations in endometrial remodeling, substance metabolism (mainly lipid, nitrogen, and retinol metabolism), immunological modulation, and insulin signaling in LRP sows. Importantly, aberrant lipid metabolite accumulation and dysregulation of insulin signaling were coincidently confirmed in endometria of LPR sows, proving an impaired insulin sensitivity. Furthermore, established high-fat diet- (HFD-) induced insulin-resistant mouse models revealed that uterine insulin resistance beginning before pregnancy deteriorated uterine receptivity and decreased implantation sites and fetal numbers. Mitochondrial biogenesis and fusion were decreased, and reactive oxygen species was overproduced in uteri from the HFD group during the implantation period. Ishikawa and JAR cells directly demonstrated that oxidative stress compromised implantation in vitro. Conclusions. This study demonstrated that uterine insulin sensitivity impairment beginning before pregnancy resulted in implantation and fetal loss associated with oxidative stress induced by mitochondrial dysfunction.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Anastasia Agapouda ◽  
Veronika Butterweck ◽  
Matthias Hamburger ◽  
Dalene de Beer ◽  
Elizabeth Joubert ◽  
...  

Mitochondrial dysfunction plays a major role not only in the pathogenesis of many oxidative stress or age-related diseases such as neurodegenerative as well as mental disorders but also in normal aging. There is evidence that oxidative stress and mitochondrial dysfunction are the most upstream and common events in the pathomechanisms of neurodegeneration. Cyclopia species are endemic South African plants and some have a long tradition of use as herbal tea, known as honeybush tea. Extracts of the tea are gaining more scientific attention due to their phenolic composition. In the present study, we tested not only the in vitro mitochondria-enhancing properties of honeybush extracts under physiological conditions but also their ameliorative properties under oxidative stress situations. Hot water and ethanolic extracts of C. subternata, C. genistoides, and C. longifolia were investigated. Pretreatment of human neuroblastoma SH-SY5Y cells with honeybush extracts, at a concentration range of 0.1-1 ng/ml, had a beneficial effect on bioenergetics as it increased ATP production, respiration, and mitochondrial membrane potential (MMP) after 24 hours under physiological conditions. The aqueous extracts of C. subternata and C. genistoides, in particular, showed a protective effect by rescuing the bioenergetic and mitochondrial deficits under oxidative stress conditions (400 μM H2O2 for 3 hours). These findings indicate that honeybush extracts could constitute candidates for the prevention of oxidative stress with an impact on aging processes and age-related neurodegenerative disorders potentially leading to the development of a condition-specific nutraceutical.


2015 ◽  
Vol 36 (3) ◽  
pp. 966-979 ◽  
Author(s):  
Hao Liu ◽  
Ping Mao ◽  
Jia Wang ◽  
Tuo Wang ◽  
Chang-Hou Xie

Background: Parkinson disease (PD) is a common adult-onset neurodegenerative disorder, and PD related neuronal injury is associated with oxidative stress and mitochondrial dysfunction. Allicin, the main biologically active compound derived from garlic, has been shown to exert various anti-oxidative and anti-apoptotic activities in in vitro and in vivo studies. Methods: The present study aimed to investigate the potential protective role of allicin in an in vitro PD model induced by 6-hydroxydopamine (6-OHDA) in PC12 cells. The protective effects were measured by cell viability, decreased lactate dehydrogenase (LDH) release and flow cytometry, and the anti-oxidative activity was determined by reactive oxygen species (ROS) generation, lipid peroxidation and the endogenous antioxidant enzyme activities. Mitochondrial function in PC12 cells was detected by mitochondrial membrane potential (MMP) collapse, cytochrome c release, mitochondrial ATP synthesis, and the mitochondrial Ca2+ buffering capacity. To investigate the potential mechanism, we also measured the expression of mitochondrial biogenesis factors, mitochondrial morphological dynamic changes, as well as detected mitochondrial dynamic proteins by western blot. Results: We found that allicin treatment significant increased cell viability, and decreased LDH release and apoptotic cell death after 6-OHDA exposure. Allicin also inhibited ROS generation, reduced lipid peroxidation and preserved the endogenous antioxidant enzyme activities. These protective effects were associated with suppressed mitochondrial dysfunction, as evidenced by decreased MMP collapse and cytochrome c release, preserved mitochondrial ATP synthesis, and the promotion of mitochondrial Ca2+ buffering capacity. In addition, allicin significantly enhanced mitochondrial biogenesis and prevented fragmentation of mitochondrial network after 6-OHDA treatment. The results of western blot analysis showed that the 6-OHDA induced decrease in the expression of optic atrophy type 1 (Opa-1), increase in mitochondrial fission 1 (Fis-1) and dynamin-related protein 1 (Drp-1) were all partially revised by allicin. Conclusion: In summary, our data strongly suggested that allicin treatment can exert protective effects against PD related neuronal injury through inhibiting oxidative stress and mitochondrial dysfunction with dynamic changes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoye Fan ◽  
Wei Wei ◽  
Jingbo Huang ◽  
Liping Peng ◽  
Xinxin Ci

Cisplatin (CDDP) is a widely used drug for cancer treatment that exhibits major side effects in normal tissues, such as nephrotoxicity in kidneys. The Nrf2 signaling pathway, a regulator of mitochondrial dysfunction, oxidative stress and inflammation, is a potential therapeutic target in CDDP-induced nephrotoxicity. We explored the underlying mechanisms in wild-type (WT) and Nrf2−/− mice on CDDP-induced renal dysfunction in vivo. We found that Nrf2 deficiency aggravated CDDP-induced nephrotoxicity, and Daph treatment significantly ameliorated the renal injury characterized by biochemical markers in WT mice and reduced the CDDP-induced cell damage. In terms of the mechanism, Daph upregulated the SIRT1 and SIRT6 expression in vivo and in vitro. Furthermore, Daph inhibited the expression level of NOX4, whereas it activated Nrf2 translocation and antioxidant enzymes HO-1 and NQO1, and alleviated oxidative stress and mitochondrial dysfunction. Moreover, Daph suppressed CDDP-induced NF-κB and MAPK inflammation pathways, as well as p53 and cleaved caspase-3 apoptosis pathways. Notably, the protective effects of Daph in WT mice were completely abrogated in Nrf2−/− mice. Moreover, Daph enhanced, rather than attenuated, the tumoricidal effect of CDDP.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Laura Le Pelletier ◽  
Matthieu Mantecon ◽  
Jennifer Gorwood ◽  
Martine Auclair ◽  
Roberta Foresti ◽  
...  

Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived-stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25y) or older women (>60y). Increased cell passages of young-donor ASCs (in vitro aging), resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated-protein-kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.


2018 ◽  
Vol 19 (1) ◽  
pp. 50-64 ◽  
Author(s):  
Yiting Yin ◽  
Xin Qi ◽  
Yuan Qiao ◽  
Huaxiang Liu ◽  
Zihan Yan ◽  
...  

Background: The notion that proteasome inhibitor bortezomib (BTZ) induced intracellular oxidative stress resulting in peripheral neuropathy has been generally accepted. The association of mitochondrial dysfunction, cell apoptosis, and endoplasmic reticulum (ER) stress with intracellular oxidative stress is ambiguous and still needs to be investigated. The activation of activating transcription factor 3 (ATF3) is a stress-hub gene which was upregulated in dorsal root ganglion (DRG) neurons after different kinds of peripheral nerve injuries. Objective: To investigate a mechanism underlying the action of BTZ-induced intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress via activation of ATF3. </P><P> Methods: Primary cultured DRG neurons with BTZ induced neurotoxicity and DRG from BTZ induced painful peripheral neuropathic rats were used to approach these questions. Results: BTZ administration caused the upregulation of ATF3 paralleled with intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress in DRG neurons both in vitro and in vivo. Blocking ATF3 signaling by small interfering RNA (siRNA) gene silencing technology resulted in decreased intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress in DRG neurons after BTZ treatment. This study exhibited important mechanistic insight into how BTZ induces neurotoxicity through the activation of ATF3 resulting in intracellular oxidative stress, mitochondrial dysfunction, cell apoptosis, and ER stress and provided a novel potential therapeutic target by blocking ATF3 signaling.


Mitochondrion ◽  
2013 ◽  
Vol 13 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Dirleise Colle ◽  
Danúbia B. Santos ◽  
Juliana M. Hartwig ◽  
Marcelo Godoi ◽  
Antonio L. Braga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document