scholarly journals Neurotherapeutic Effect of Inula britannica var. Chinensis against H2O2-Induced Oxidative Stress and Mitochondrial Dysfunction in Cortical Neurons

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 375
Author(s):  
Jin Young Hong ◽  
Hyunseong Kim ◽  
Junseon Lee ◽  
Wan-Jin Jeon ◽  
Seung Ho Baek ◽  
...  

Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.

2021 ◽  
Author(s):  
Rafaella Carvalho Rossato ◽  
Alessandro Eustaquio Campos Granato ◽  
Jessica Cristina Pinto ◽  
Carlos Dailton Guedes de Oliveira Moraes ◽  
Geisa Nogueira Salles ◽  
...  

ABSTRACTAlzheimer’s disease (AD) is a type of dementia that affects millions of people. Although there is no cure, several study strategies seek to elucidate the mechanisms of the disease. Recent studies address the benefits of taurine. Thus, the present study aims to analyze the neuroprotective effect of taurine on human neuroblastoma, using an in vitro experimental model of oxidative stress induced by hydrocortisone in the SH-SY5Y cell line as a characteristic model of AD. The violet crystal assay was used for cell viability and the evaluation of cell morphology was performed by scanning electron microscopy (SEM). After pretreatment with taurine, the SH-SY5Y cell showed an improvement in cell viability in the face of oxidative stress and improved cell morphology. Thus, the treatment presented a neuroprotective effect.GRAPHICAL ABSTRACT


2020 ◽  
Vol 15 (2) ◽  
pp. 105-109 ◽  
Author(s):  
Burak Yulug ◽  
Mehmet Ozansoy ◽  
Merve Alokten ◽  
Muzaffer B.C. Ozansoy ◽  
Seyda Cankaya ◽  
...  

Background: Antibiotic therapies targeting multiple regenerative mechanisms have the potential for neuroprotective effects, but the diversity of experimental strategies and analyses of non-standardised therapeutic trials are challenging. In this respect, there are no cases of successful clinical application of such candidate molecules when it comes to human patients. Methods: After 24 hours of culturing, three different minocycline (Sigma-Aldrich, M9511, Germany) concentrations (1 μM, 10 μM and 100 μM) were added to the primary cortical neurons 15 minutes before laser axotomy procedure in order to observe protective effect of minocycline in these dosages. Results: Here, we have shown that minocycline exerted a significant neuroprotective effect at 1 and 100μM doses. Beyond confirming the neuroprotective effect of minocycline in a more standardised and advanced in-vitro trauma model, our findings could have important implications for future studies that concentrate on the translational block between animal and human studies. Conclusion: Such sophisticated approaches might also help to conquer the influence of humanmade variabilities in critical experimental injury models. To the best of our knowledge, this is the first study showing that minocycline increases in-vitro neuronal cell survival after laser-axotomy.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Parinee Kittimongkolsuk ◽  
Nattaporn Pattarachotanant ◽  
Siriporn Chuchawankul ◽  
Michael Wink ◽  
Tewin Tencomnao

Despite the Tiger Milk Mushroom Lignosus rhinocerus (LR) having been used as a traditional medicine, little is known about the neuroprotective effects of LR extracts. This study aims to investigate the neuroprotective effect of three extracts of LR against glutamate-induced oxidative stress in mouse hippocampal (HT22) cells as well as to determine their effect in Caenorhabditis elegans. In vitro, we assessed the toxicity of three LR extracts (ethanol extract (LRE), cold-water extract (LRC) and hot-water extract (LRH)) and their protective activity by MTT assay, Annexin V-FITC/propidium iodide staining, Mitochondrial Membrane Potential (MMP) and intracellular ROS accumulation. Furthermore, we determined the expression of antioxidant genes (catalase (CAT), superoxide dismutase (SOD1 and SOD2) and glutathione peroxidase (GPx)) by qRT-PCR. In vivo, we investigated the neuroprotective effect of LRE, not only against an Aβ-induced deficit in chemotaxis behavior (Alzheimer model) but also against PolyQ40 formation (model for Morbus Huntington) in transgenic C. elegans. Only LRE significantly reduced both apoptosis and intracellular ROS levels and significantly increased the expression of antioxidant genes after glutamate-induced oxidative stress in HT22 cells. In addition, LRE significantly improved the Chemotaxis Index (CI) in C. elegans and significantly decreased PolyQ40 aggregation. Altogether, the LRE exhibited neuroprotective properties both in vitro and in vivo.


2020 ◽  
pp. 096032712098422
Author(s):  
Xiaobin Liu ◽  
Min Li ◽  
Jiabao Zhu ◽  
Weidong Huang ◽  
Jinning Song

Sestrin2 (SESN2) is stress-inducible protein that confers cytoprotective effects against various noxious stimuli. Accumulating evidence has documented that SESN2 has potent anti-apoptosis and anti-oxidative stress functions. However, whether it provides neuroprotection in traumatic brain injury (TBI) models remains unexplored. The purpose of this study was to explore the regulatory effect of SESN2 on TBI using in vivo and in vitro models. We found that TBI resulted in a marked induction of SESN2 in the cerebral cortex tissues of mice. SESN2 overexpression in the brain by in vivo gene transfer significantly decreased neurological deficit, brain edema, and neuronal apoptosis of mice with TBI. Moreover, the overexpression of SESN2 significantly decreased the oxidative stress induced by TBI in mice. In vitro studies of TBI demonstrated that SESN2 overexpression decreased apoptosis and oxidative stress in scratch-injured cortical neurons. Notably, SESN2 overexpression increased the nuclear levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and enhanced the activation of Nrf2 antioxidant signaling in in vivo and in vitro models of TBI. In addition, the inhibition of Nrf2 significantly abolished SESN2-mediated neuroprotective effects in vivo and in vitro. In conclusion, these results of our work demonstrate that SESN2 protects against TBI by enhancing the activation of Nrf2 antioxidant signaling.


2020 ◽  
Vol 13 (2) ◽  
pp. 110-122
Author(s):  
Bandaru Nagaraju ◽  
A. Ramu ◽  
S. Vidhyadhara

Nature is the best source of complementary and alternative medicine. The plant Biophytum reinwardtii has been used traditionally in pain, inflammatory and oxidative stress related disorders. In this consequence, fraction of methanolic extract of Biophytum reinwardtii was selected to explore the ability of this plant to enhance cognitive function, brain antioxidant enzymes and anti-acetyl cholinesterase activity which can be used for the treatment of oxidative stress related disorders like Alzheimer’s disease (AD). The purpose of this study was to investigate the neuroprotective effect of HEMBR on learning and memory impairment in scopolamine-induced rats of dementia and oxidative stress. Treatment with HEMBR (i.e., 50 and 100 mg/kg b.w.) was investigated in scopolamine-treated Swiss albino male rats for 7 days and its neuroprotective effects were examined using Elevated Plus Maze (EPM) test, Passive Avoidance (PA) test and, Morris Water Maze (MWM) test as well as level of antioxidant enzymes such as catalase (CAT), reduced glutathione (GSH) and acetylcholinesterase (AChE) activity in rat brain tissue homogenates. The present study demonstrates that HEMBR showed the neuroprotective effect by improving cognitive functions and reduces oxidative stress by increasing the level of brain antioxidant enzymes as well as decreasing acetylcholinesterase activity. Therefore, this plant extract faction can be used for enhancing learning, memory, antioxidant potentiality and anti-acetylcholinesterase activity in neurodegenerative disorders like AD.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Elena Alberdi ◽  
María Victoria Sánchez-Gómez ◽  
Asier Ruiz ◽  
Fabio Cavaliere ◽  
Carolina Ortiz-Sanz ◽  
...  

Amyloid beta- (Aβ-) mediated ROS overproduction disrupts intraneuronal redox balance and exacerbates mitochondrial dysfunction which leads to neuronal injury. Polyphenols have been investigated as therapeutic agents that promote neuroprotective effects in experimental models of brain injury and neurodegenerative diseases. The aim of this study was to identify the neuroprotective effects of morin and mangiferin against Aβ oligomers in cultured cortical neurons and organotypic slices as well as their mechanisms of action. Cell death caused by Aβ oligomers in neuronal cultures was decreased in the presence of micromolar concentrations of mangiferin or morin, which in turn attenuated oxidative stress. The neuroprotective effects of antioxidants against Aβ were associated with the reduction of Aβ-induced calcium load to mitochondria; mitochondrial membrane depolarization; and release of cytochrome c from mitochondria, a key trigger of apoptosis. Additionally, we observed that both polyphenols activated the endogenous enzymatic antioxidant system and restored oxidized protein levels. Finally, Aβ induced an impairment of energy homeostasis due to a decreased respiratory capacity that was mitigated by morin and mangiferin. Overall, the beneficial effects of polyphenols in preventing mitochondrial dysfunction and neuronal injury in AD cell models suggest that morin and mangiferin hold promise for the treatment of this neurological disorder.


Author(s):  
Ф.М. Шакова ◽  
Т.И. Калинина ◽  
М.В. Гуляев ◽  
Г.А. Романова

Цель исследования - изучение влияния комбинированной терапии (мутантные молекулы эритропоэтина (EPO) и дипептидный миметик фактора роста нервов ГК-2H) на воспроизведение условного рефлекса пассивного избегания (УРПИ) и объем поражения коры мозга у крыс с двусторонним ишемическим повреждением префронтальной коры. Методика. Мутантные молекулы EPO (MЕРО-TR и MЕPО-Fc) с значительно редуцированной эритропоэтической и выраженной цитопротекторной активностью созданы методом генной инженерии. Используемый миметик фактора роста нервов человека, эндогенного регуляторного белка, в экспериментах in vitro проявлял отчетливые нейропротективные свойства. Двустороннюю фокальную ишемию префронтальной коры головного мозга крыс создавали методом фотохимического тромбоза. Выработку и оценку УРПИ проводили по стандартной методике. Объем повреждения мозга оценивался при помощи МРТ. MEPO-TR и MEPO-Fc (50 мкг/кг) вводили интраназально однократно через 1 ч после фототромбоза, ГК-2Н (1 мг/кг) - внутрибрюшинно через 4 ч после фототромбоза и далее в течение 4 послеоперационных суток. Результаты. Выявлено статистически значимое сохранение выработанного до ишемии УРПИ, а также значимое снижение объема повреждения коры при комплексной терапии. Полученные данные свидетельствуют об антиамнестическом и нейропротекторном эффектах примененной комбинированной терапии, которые наиболее отчетливо выражены в дозах: МEPO-Fc (50 мкг/кг) и ГК-2Н (1 мг/кг). Заключение. Подтвержден нейропротекторный эффект и усиление антиамнестического эффекта при сочетанном применении мутантных производных эритропоэтина - MEPO-TR и MEPO-Fc и дипептидного миметика фактора роста нервов человека ГК-2H. The aim of this study was to investigate the effect of combination therapy, including mutant erythropoietin molecules (EPO) and a dipeptide mimetic of the nerve growth factor, GK-2H, on the conditioned passive avoidance (PA) reflex and the volume of injury induced by bilateral ischemia of the prefrontal cortex in rats. Using the method of genetic engineering the mutant molecules of EPO, MERO-TR and MEPO-Fc, with strongly reduced erythropoietic and pronounced cytoprotective activity were created. The used human nerve growth factor mimetic, an endogenous regulatory protein based on the b-bend of loop 4, which is a dimeric substituted dipeptide of bis- (N-monosuccinyl-glycyl-lysine) hexamethylenediamine, GK-2 human (GK-2H), has proven neuroprotective in in vitro experiments. Methods. Bilateral focal ischemic infarction was modeled in the rat prefrontal cortex by photochemically induced thrombosis. The PA test was performed according to a standard method. Volume of brain injury was estimated using MRI. MEPO-TR, and MEPO-Fc (50 mg/kg, intranasally) were administered once, one hour after the injury. GK-2Н (1 mg/kg, i.p.) was injected four hours after the injury and then for next four days. Results. The study showed that the complex therapy provided statistically significant retention of the PA reflex developed prior to ischemia and a significant decrease in the volume of injury. The anti-amnestic and neuroprotective effects of combination therapy were most pronounced at doses of MEPO-Fc 50 mg/kg and GK-2H 1 mg/kg. Conclusion. This study has confirmed the neuroprotective effect and enhancement of the anti-amnestic effect exerted by the combination of mutant erythropoietin derivatives, MEPO-TR and MEPO-Fc, and the dipeptide mimetic of human growth factor GK-2H.


2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


Sign in / Sign up

Export Citation Format

Share Document