Water accessibility to hydroxyls confined in solid wood cell walls

Cellulose ◽  
2020 ◽  
Vol 27 (10) ◽  
pp. 5617-5627 ◽  
Author(s):  
Emil Engelund Thybring ◽  
Sara Piqueras ◽  
Asghar Tarmian ◽  
Ingo Burgert
2018 ◽  
Vol 64 (5) ◽  
pp. 501-508 ◽  
Author(s):  
Yurong Wang ◽  
Minglei Su ◽  
Haiyan Sun ◽  
Haiqing Ren

2021 ◽  
Author(s):  
Paavo Penttilä ◽  
Aleksi Zitting ◽  
Tainise Lourençon ◽  
Michael Altgen ◽  
Ralf Schweins ◽  
...  

Cellulose ◽  
2021 ◽  
Author(s):  
Paavo A. Penttilä ◽  
Aleksi Zitting ◽  
Tainise Lourençon ◽  
Michael Altgen ◽  
Ralf Schweins ◽  
...  

Abstract Water interactions and accessibility of the nanoscale components of plant cell walls influence their properties and processability in relation to many applications. We investigated the water-accessibility of nanoscale pores within the fibrillar structures of unmodified Norway spruce cell walls by small-angle neutron scattering (SANS) and Fourier-transform infra-red (FTIR) spectroscopy. The different sensitivity of SANS to hydrogenated ($$\hbox {H}_2\hbox {O}$$ H 2 O ) and deuterated water ($$\hbox {D}_2\hbox {O}$$ D 2 O ) was utilized to follow the exchange kinetics of water among cellulose microfibrils. FTIR spectroscopy was used to study the time-dependent re-exchange of OD groups to OH in wood samples transferred from liquid $$\hbox {D}_2\hbox {O}$$ D 2 O to $$\hbox {H}_2\hbox {O}$$ H 2 O . In addition, the effects of drying on the nanoscale structure and its water-accessibility were addressed by comparing SANS results and the kinetics of water exchange between never-dried and dried/rewetted wood samples. The results of the kinetic analyses allowed to identify two processes with different timescales. The diffusion-driven exchange of water in the spaces between microfibrils, which was observed with both SANS and FTIR, takes place within minutes and rather homogeneously. The second, slower process appeared only in the OD/OH re-exchange followed by FTIR, and it still continued after several weeks of immersion in $$\hbox {H}_2\hbox {O}$$ H 2 O . SANS could not detect any significant difference between the never-dried and dried/rewetted samples, whereas FTIR revealed a small portion of OD groups that resisted the re-exchange and this portion became larger with drying. Graphic abstract


Holzforschung ◽  
2015 ◽  
Vol 69 (8) ◽  
pp. 985-991 ◽  
Author(s):  
Markus Hauptmann ◽  
Wolfgang Gindl-Altmutter ◽  
Christian Hansmann ◽  
Markus Bacher ◽  
Thomas Rosenau ◽  
...  

Abstract The applicability of amino acid tricine has been investigated for the modification of solid wood. Oak, walnut, cherry, and birch wood lamella were impregnated with a tricine solution and subjected to a drying process. The interaction between tricine and wood components was analyzed by attenuated total reflectance-Fourier transform infrared and nuclear magnetic resonance spectroscopy, and the reactions only with hemicelluloses were detected. Xylosylamine structures were found among the reaction products of xylose and tricine, and solid oak wood also showed this type of reaction. The equilibrium moisture content of the modified wood decreased, and this finding was interpreted as an indication of a modification of the polysaccharides. The hardness and tensile strength of the tricine-modified lamellae increased significantly. The change of the physical properties is probably due to the low moisture content with increased hydrogen bonding between wood cell wall components. A crystalline layer of tricine on the cell walls was observed by means of electron microscopy.


Author(s):  
Zoltán Börcsök ◽  
Zoltán Pásztory

AbstractThe lignin, cellulose and hemicelluloses in wood are polymers that behave similarly to the artificial polymers and are bonded together in wood. Lignin differs from the other two substances by its highly branched, amorphous, three-dimensional structure. Under appropriate conditions, the moist lignin incorporated in the wood softens at about 100 °C and allows the molecules of it to deform in the cell walls. There are many advantages and disadvantages to this phenomenon. If we know this process accurately and the industrial areas where it matters, we may be able to improve these industrial processes. This article provides a brief theoretical summary of lignin softening and the woodworking processes where it plays a role: wood welding, pellet manufacturing, manufacturing binderless boards, solid wood bending, veneer manufacturing, and solid wood surface densification.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
Randy Moore

Cell and tissue interactions are a basic aspect of eukaryotic growth and development. While cell-to-cell interactions involving recognition and incompatibility have been studied extensively in animals, there is no known antigen-antibody reaction in plants and the recognition mechanisms operating in plant grafts have been virtually neglected.An ultrastructural study of the Sedum telephoides/Solanum pennellii graft was undertaken to define possible mechanisms of plant graft incompatibility. Grafts were surgically dissected from greenhouse grown plants at various times over 1-4 weeks and prepared for EM employing variations in the standard fixation and embedding procedure. Stock and scion adhere within 6 days after grafting. Following progressive cell senescence in both Sedum and Solanum, the graft interface appears as a band of 8-11 crushed cells after 2 weeks (Fig. 1, I). Trapped between the buckled cell walls are densely staining cytoplasmic remnants and residual starch grains, an initial product of wound reactions in plants.


Author(s):  
D. L. Rohr ◽  
S. S. Hecker

As part of a comprehensive study of microstructural and mechanical response of metals to uniaxial and biaxial deformations, the development of substructure in 1100 A1 has been studied over a range of plastic strain for two stress states.Specimens of 1100 aluminum annealed at 350 C were tested in uniaxial (UT) and balanced biaxial tension (BBT) at room temperature to different strain levels. The biaxial specimens were produced by the in-plane punch stretching technique. Areas of known strain levels were prepared for TEM by lapping followed by jet electropolishing. All specimens were examined in a JEOL 200B run at 150 and 200 kV within 24 to 36 hours after testing.The development of the substructure with deformation is shown in Fig. 1 for both stress states. Initial deformation produces dislocation tangles, which form cell walls by 10% uniaxial deformation, and start to recover to form subgrains by 25%. The results of several hundred measurements of cell/subgrain sizes by a linear intercept technique are presented in Table I.


Author(s):  
R.E. Crang ◽  
M. Mueller ◽  
K. Zierold

Obtaining frozen-hydrated sections of plant tissues for electron microscopy and microanalysis has been considered difficult, if not impossible, due primarily to the considerable depth of effective freezing in the tissues which would be required. The greatest depth of vitreous freezing is generally considered to be only 15-20 μm in animal specimens. Plant cells are often much larger in diameter and, if several cells are required to be intact, ice crystal damage can be expected to be so severe as to prevent successful cryoultramicrotomy. The very nature of cell walls, intercellular air spaces, irregular topography, and large vacuoles often make it impractical to use immersion, metal-mirror, or jet freezing techniques for botanical material.However, it has been proposed that high-pressure freezing (HPF) may offer an alternative to the more conventional freezing techniques, inasmuch as non-cryoprotected specimens may be frozen in a vitreous, or near-vitreous state, to a radial depth of at least 0.5 mm.


Author(s):  
C. W. Price ◽  
E. F. Lindsey ◽  
R. M. Franks ◽  
M. A. Lane

Diamond-point turning is an efficient technique for machining low-density polystyrene foam, and the surface finish can be substantially improved by grinding. However, both diamond-point turning and grinding tend to tear and fracture cell walls and leave asperities formed by agglomerations of fragmented cell walls. Vibratoming is proving to be an excellent technique to form planar surfaces in polystyrene, and the machining characteristics of vibratoming and diamond-point turning are compared.Our work has demonstrated that proper evaluation of surface structures in low density polystyrene foam requires stereoscopic examinations; tilts of + and − 3 1/2 degrees were used for the stereo pairs. Coating does not seriously distort low-density polystyrene foam. Therefore, the specimens were gold-palladium coated and examined in a Hitachi S-800 FESEM at 5 kV.


Sign in / Sign up

Export Citation Format

Share Document