scholarly journals An enhanced design of a 5G MIMO antenna for fixed wireless aerial access

2021 ◽  
Author(s):  
Faris A. Almalki ◽  
Marios C. Angelides

AbstractA recent market prediction is that 5G Fixed Wireless Access (FWA) will more than double over the next five years and trials at the same period in London suggest promising results. However, the shift to 5G FWA has raised a new set of research challenges in relation to speed of deployment and re-deployment, coverage, power consumption, end user mobility and last mile connectivity, to name just a few, because of the much higher expectations. A recent review reveals that key 5G Physical Layer technologies that will enable wide mobile and FWA have not kept up pace. In response to some of those research challenges, this paper presents the design of a 5G Multiple Input Multiple Output (MIMO) Antenna that is mounted on a tethered aerostat, and the combination of which serves as a 5G FWA aerial station. The antenna design features several novelties and the aerial station can provide last mile connectivity to a wide coverage footprint, with moderate power consumption and operating at high speeds. Both the evaluation of the antenna performance using several key performance indicators and the validation of the aerial station as a 5G FWA in a wireless sensor network (WSN) proof-of-concept application reveal efficiency gains.

2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1321
Author(s):  
Amjad Iqbal ◽  
Ahsan Altaf ◽  
Mujeeb Abdullah ◽  
Mohammad Alibakhshikenari ◽  
Ernesto Limiti ◽  
...  

This paper presents an isolation enhancement of two closely packed multiple-input multiple-output (MIMO) antenna system using a modified U-shaped resonator. The modified U-shaped resonator is placed between two closely packed radiating elements resonating at 5.4 GHz with an edge to edge separation distance of 5.82 mm (λ∘/10). Through careful adjustment of parametric modelling, the isolation level of −23 dB among the densely packed elements is achieved. The coupling behaviour of the MIMO elements is analysed by accurately designing the equivalent circuit model in each step. The antenna performance is realized in the presence and absence of decoupling structure, and the results shows negligible effects on the antenna performance apart from mutual coupling. The simple assembly of the proposed modified U-shaped isolating structure makes it useful for several linked applications. The proposed decoupling structure is compact in nature, suppress the undesirable coupling generated by surface wave and nearby fields, and is easy to fabricate.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yanjie Wu ◽  
Yunliang Long

This paper presents a long-term evolution (LTE) 700 MHz band multiple-input-multiple-output (MIMO) antenna, and high isolation between the two symmetrical antenna elements is obtained without introducing extra decoupling structure. Each antenna element is a combination antenna of PIFA and a meander monopole antenna. The end of the PIFA and the meander monopole antenna are, respectively, overlapped with the 50 Ω microstrip feed line, the two overlapping areas produce additional capacitance which can be considered decoupling structures to enhance the isolation for the MIMO antenna, as well as the impedance matching of the antenna elements. The MIMO antenna is etched on FR4 PCB board with dimensions of 71 × 40 × 1.6 mm3; the edge-to-edge separation of the two antenna elements is only nearly 0.037 λat 700 MHz. Both simulation and measurement results are used to confirm the MIMO antenna performance; the operating bandwidth is 698–750 MHz withS11≤−6 dB andS21≤−23 dB.


Author(s):  
Pavithra S ◽  
AmeeliaRoseline A

In MIMO(multiple input multiple output) system, antenna performance are degraded by mutual coupling hence to overcome this we go for circular polarization. In this paper we use planar, circularly polarized MIMO patch with three grounded stubs, F-shaped mirrored structure to achieve same time isolation &matching with offset feeding between two patches for circularly polarization.The elements of antenna are closely packed with 0.06λ0 of edge to edge distance at 2.5 GHZ frequency. The proposed antenna will results the impedance matching S11 < -10 dB and high isolation of S12 < -20 dB.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2431
Author(s):  
Hamizan Yon ◽  
Nurul Huda Abd Rahman ◽  
Mohd Aziz Aris ◽  
Mohd Haizal Jamaluddin ◽  
Irene Kong Cheh Lin ◽  
...  

In the 5G system, multiple-input multiple-output (MIMO) antennas for both transmitting and receiving ends are required. However, the design of MIMO antennas at the 5G upper band is challenging due to the mutual coupling issues. Many techniques have been proposed to improve antenna isolation; however, some of the designs have impacts on the antenna performance, especially on the gain and bandwidth reduction, or an increase in the overall size. Thus, a design with a detailed trade-off study must be implemented. This article proposes a new C-shaped parasitic structure around a main circular radiating patch of a MIMO antenna at 16 GHz with enhanced isolation features. The proposed antenna comprises two elements with a separation of 0.32λ edge to edge between radiation parts placed in a linear configuration with an overall dimension of 15 mm × 26 mm. The C-shaped parasitic element was introduced around the main radiating antenna for better isolation. Based on the measurement results, the proposed structure significantly improved the isolation from −23.86 dB to −32.32 dB and increased the bandwidth from 1150 MHz to 1400 MHz. For validation, the envelope correlation coefficient (ECC) and the diversity gain (DG) were also measuredas 0.148 dB and 9.89 dB, respectively. Other parameters, such as the radiation pattern, the total average reflection coefficient and the mean effective gain, were also calculated to ensure the validity of the proposed structure. Based on the design work and analysis, the proposed structure was proven to improve the antenna isolation and increase the bandwidth, while maintaining the small overall dimension.


Author(s):  
M. Saravanan ◽  
R. Kalidoss ◽  
B. Partibane ◽  
K. S. Vishvaksenan

Abstract The design, analysis, fabrication, and testing of a four-port multiple-input multiple-output (MIMO) antenna is reported in this paper for automotive communications. The MIMO antenna is constructed using the basic antenna element exploiting a slot geometry. Two such antennas are developed on the same microwave laminate to develop a two-port MIMO antenna. Two such microwave laminates are interlocked to create the four-port MIMO scheme. The most distinct feature of the proposed architecture is that the inter-port isolation is well-taken care without the need for an external decoupling unit. The four-port MIMO antenna has an overall volume of 32 × 15 × 32 mm3. The prototype MIMO antenna is fabricated and the measurements are carried out to validate the simulation results. The antenna offers ultra-wideband (UWB) characteristics covering the frequency range of 2.8–9.5 GHz. The average boresight gain of the antenna ranges from 3.2 to 5.41 dBi with the peak gain at 8 GHz. The simulated efficiency of the antenna is greater than 73% within the operating bandwidth. The MIMO parameters such as envelope correlation coefficient, diversity gain, and mean effective gain are evaluated and presented. The appropriateness of the proposed antenna for deployment in the shark fin housing of the present-day automobiles is verified using on-car performance estimation.


2019 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
N. Al Shalaby ◽  
S. G. El-Sherbiny

In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs.  The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Abubaker Ahmed Elobied ◽  
Xue-Xia Yang ◽  
Ningjie Xie ◽  
Steven Gao

This paper presents a close-spaced dual-band 2 × 2 multiple-input multiple-output (MIMO) antenna with high isolation based on half-mode substrate integrated waveguide (HMSIW). The dual-band operation of the antenna element is achieved by loading a rectangular patch outside the radiating aperture of an HMSIW cavity. The HMSIW cavity is excited by a coaxial probe, whereas the rectangular patch is energized through proximity coupling by the radiating aperture of HMSIW. The antenna elements can be closely placed using the rotation and orthogonal arrangement for a 2 × 2 array. Small neutralization lines at the center of the MIMO antenna can increase the isolation among its elements by around 10 dB in the lower band and 5 dB in the higher band. A prototype of the MIMO antenna is fabricated and its performance is measured. The measured results show that the resonant frequencies are centered at 4.43 and 5.39 GHz with bandwidths of 110 and 80 MHz and peak gains of 6 and 6.4 dBi, respectively. The minimum isolation in both bands is greater than 35 dB. The envelope correlation coefficient is lower than 0.005 within two operating bands.


Author(s):  
Anupma Gupta ◽  
Ankush Kansal ◽  
Paras Chawla

Abstract A compact multiple input multiple output (MIMO) antenna operating at 2.45 GHz industrial scientific and medical band is presented for wearable devices. Open-end slotting is used to miniaturize the antenna dimensions. Inverted U-shaped ground stub is incorporated to reduce mutual coupling. On-body performance is analyzed on a three-layered equivalent tissue phantom model. The wide bandwidth of 300 MHz and port isolation of 30 dB are obtained from measured results. The antenna shows the efficiency of 40% and directivity of 4.56 dBi when placed at a gap of “s” = 4 mm from the body. Broadside radiation pattern and low specific absorption rate make the antenna suitable for on-body communication. Further, diversity performance is measured in terms of envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss (CCL). The value of ECC is 0.025, DG is 9.98 dB, and CCL is 0.12 bits/s/Hz at 2.45 GHz. Antenna robustness is examined by bending the structure at different radii along the x-axis and y-axis. Performance of the proposed structure is reliable with structural deformation.


2016 ◽  
Vol 9 (3) ◽  
pp. 573-580 ◽  
Author(s):  
Garima Srivastava ◽  
B. K. Kanuijia ◽  
Rajeev Paulus

A compact printed 2 × 2 ultrawideband (UWB) multiple input multiple output (MIMO) antenna with a single circular patch as a common radiator for both the antenna elements is presented in this paper. A single circular patch is excited by two tapered CPW feeds for dual polarization. To improve the isolation between two ports, a rectangular slot of dimension L1 × W1 is created in the radiator. The UWB MIMO antenna has impedance bandwidth of 3–12 GHz with a isolation better than 17 dB between the two ports. The envelope correlation coefficient and the capacity loss are evaluated to ensure the good diversity performance of UWB MIMO antenna. The antenna has a compact size of 45 × 45 mm2 and is fabricated on low cost FR4 substrate and measured using Agilent VNA. The simulated and measured results show that the proposed UWB antenna is good candidate for UWB MIMO applications.


Sign in / Sign up

Export Citation Format

Share Document