In vitro pharmacological study of monomeric platinum(III) hematoporphyrin IX complexes

2010 ◽  
Vol 29 (5) ◽  
pp. 742-751 ◽  
Author(s):  
Georgi Momekov ◽  
Margarita Karaivanova ◽  
Iva Ugrinova ◽  
Evdokia Pasheva ◽  
Galina Gencheva ◽  
...  
Author(s):  
Xia Liu ◽  
Feihua Huang ◽  
Xiao Lu ◽  
Yuji Wang ◽  
Tingting Cai ◽  
...  

Background: Kuan xiong aerosol (KXA) is a kind of Chinese herbal compound used to regulating qi-flowing for relieving pain and improving angina. However, little pharmacological study of this traditional Chinese medicine preparation has been reported to confirm these activities. Objective: This article aims to observe the effect of resisting acute myocardial ischemia (AMI) in vivo and dilating vessel in vitro of KXA. Materials: The AMI model involves intravenously injecting pituitary (2 U.kg-1) into the ear of rabbits. Electrocardiograph (ECG) T waves were then recorded after administration and the falling range was calculated. Following this, the level of serum Cardiac troponin T (cTn-T) and the histopathology of the cardiac muscle tissue was evaluated. In vitro, the effect of KXA on vasodilation of isolated aortic rings that had been pre-contracted with KCl (30 mM) was observed. Results: It was found KXA reduced ECG ST-T waves and serum cTn-T in the rabbit AMI model, protected myocardial tissue from fracturing and loss of myocardial fibers, and inhibited inflammatory cell infiltration, cavitation degeneration and karyopyknosis of the myocardial matrix. Furthermore, the administration of 0.215, 1.075 and 2.150 mg.mL-1 KXA resulted in significant relaxation of the aortic rings at a rate of 69.63 %, 90.14 % and 118.72 % (p < 0.01) of the untreated ones, and a second shrinkage ratio of 20.17 %, 4.29 %, and 4.54 % (p < 0.01) of the untreated ones, respectively. Conclusions: these results suggest KXA protects against AMI, contributes to dilation of blood vessels and has long-acting effectiveness.


Author(s):  
MOHAN DURGA ◽  
THIYAGARAJAN DEVASENA

Objective: Phytochemicals are known to elicit potential antioxidant activity. This study examined the cardioprotective effects of quercetin against oxidative damage to rat cardiomyocyte cells (H9c2) after treatment with Diesel Exhaust Nanoparticles (DEPs) or Petrol Exhaust Nanoparticles (PEPs). Methods: Cardiomyocyte cells were exposed to DEPs or PEPs alone and in a combination with quercetin for 24 h. Results: Results showed that quercetin had no lethal effect on H9c2 cells up to a concentration of 1.0 μg/ml. Exposure to DEPs (4.0 μg/ml) or PEPs (10.0 μg/ml) induced cytotoxicity, oxidative stress, and inflammation (p<0.05). It also provoked lipid peroxidation by an increase in MDA and a decrease in SOD activity and glutathione activity (p<0.05). Simultaneous addition of quercetin restored these parameters to near normal. Conclusion: These results thus specify that quercetin plays a protective role in cardiac cells exposed to DEPs and PEPs.


2008 ◽  
Vol 120 (1) ◽  
pp. 98-102 ◽  
Author(s):  
Sanaa Lahlou ◽  
Khadija Cherkaoui Tangi ◽  
Badiaâ Lyoussi ◽  
Nicole Morel

2008 ◽  
Vol 100 (1) ◽  
pp. 474-481 ◽  
Author(s):  
Jonathan S. Carp ◽  
Ann M. Tennissen ◽  
Donna L. Mongeluzi ◽  
Christopher J. Dudek ◽  
Xiang Yang Chen ◽  
...  

In vitro slice preparations of CNS tissue are invaluable for studying neuronal function. However, up to now, slice protocols for adult mammal spinal motoneurons—the final common pathway for motor behaviors—have been available for only limited portions of the spinal cord. In most cases, these preparations have not been productive due to the poor viability of motoneurons in vitro. This report describes and validates a new slice protocol that for the first time provides reliable intracellular recordings from lumbar motoneurons of adult rats. The key features of this protocol are: preexposure to 100% oxygen; laminectomy prior to perfusion; anesthesia with ketamine/xylazine; embedding the spinal cord in agar prior to slicing; and, most important, brief incubation of spinal cord slices in a 30% solution of polyethylene glycol to promote resealing of the many motoneuron dendrites cut during sectioning. Together, these new features produce successful recordings in 76% of the experiments and an average action potential amplitude of 76 mV. Motoneuron properties measured in this new slice preparation (i.e., voltage and current thresholds for action potential initiation, input resistance, afterhyperpolarization size and duration, and onset and offset firing rates during current ramps) are comparable to those recorded in vivo. Given the mechanical stability and precise control over the extracellular environment afforded by an in vitro preparation, this new protocol can greatly facilitate electrophysiological and pharmacological study of these uniquely important neurons and other delicate neuronal populations in adult mammals.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Gang Ning ◽  
Qihui Zhu ◽  
Wonyoung Kang ◽  
Hamin Lee ◽  
Leigh Maher ◽  
...  

Abstract Background Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Human epidermal growth factor receptor 2 (HER2) amplification occurs in approximately 13–23% of all GC cases and patients with HER2 overexpression exhibit a poor prognosis. Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, is an effective agent to treat HER2-amplified breast cancer but it failed in gastric cancer (GC) clinical trials. However, the molecular mechanism of lapatinib resistance in HER2-amplified GC is not well studied. Methods We employed an unbiased, genome-scale screening with pooled CRISPR library on HER2-amplified GC cell lines to identify genes that are associated with resistance to lapatinib. To validate the candidate genes, we applied in vitro and in vivo pharmacological tests to confirm the function of the target genes. Results We found that loss of function of CSK or PTEN conferred lapatinib resistance in HER2-amplified GC cell lines NCI-N87 and OE19, respectively. Moreover, PI3K and MAPK signaling was significantly increased in CSK or PTEN null cells. Furthermore, in vitro and in vivo pharmacological study has shown that lapatinib resistance by the loss of function of CSK or PTEN, could be overcome by lapatinib combined with the PI3K inhibitor copanlisib and MEK inhibitor trametinib. Conclusions Our study suggests that loss-of-function mutations of CSK and PTEN cause lapatinib resistance by re-activating MAPK and PI3K pathways, and further proved these two pathways are druggable targets. Inhibiting the two pathways synergistically are effective to overcome lapatinib resistance in HER2-amplified GC. This study provides insights for understanding the resistant mechanism of HER2 targeted therapy and novel strategies that may ultimately overcome resistance or limited efficacy of lapatinib treatment for subset of HER2 amplified GC.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Miron Mikhailowitsch Gershkovich ◽  
Victoria Elisabeth Groß ◽  
Anette Kaiser ◽  
Simone Prömel

Abstract Background The neuropeptide Y system affects various processes, among others food intake, and is frequently discussed in the context of targeting obesity. Studies in model organisms are indispensable to enable molecular studies in a physiological context. Although the NPY system is evolutionarily conserved in all bilaterians, in the widely used model Caenorhabditis elegans there is controversy on the existence of NPY orthologous molecules. While the FMRFamide-like peptide (FLP)/Neuropeptide receptor-Resemblance (NPR) system in the nematode was initially suggested to be orthologous to the mammalian NPY system, later global phylogenetic studies indicate that FLP/NPR is protostome-specific. Methods We performed a comprehensive pharmacological study of the FLP/NPR system in transfected cells in vitro, and tested for functional substitution in C. elegans knockout strains. Further, we phenotypically compared different flp loss-of-function strains. Differences between groups were compared by ANOVA and post-hoc testing (Dunnett, Bonferroni). Results Our pharmacological analysis of the FLP/NPR system including formerly functionally uncharacterized NPY-like peptides from C. elegans demonstrates that G protein-coupling and ligand requirements for receptor activation are similar to the human NPY system. In vitro and in vivo analyses show cross-reactivity of NPY with the FLP/NPR system manifesting in the ability of the human GPCRs to functionally substitute FLP/NPR signaling in vivo. The high pharmacological/functional similarities enabled us to identify C. elegans FLP-14 as a key molecule in avoidance behavior. Conclusions Our data demonstrate the pharmacological and functional similarities of human NPY and C. elegans NPR systems. This adds a novel perspective to current phylogenetic reconstructions of the neuropeptide Y system. NPY and NPR receptors are pharmacologically so similar that the human receptors can functionally compensate for the C. elegans ones, suggesting orthologous relationships. This is also underlined by the presence of NPY-like peptides and parallels in peptide requirements for receptor activation. Further, the results presented here highlight the potential of this knowledge for physiological as well as molecular studies on neuropeptide GPCRs such as the NPY system in the future.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Joabe Gomes de Melo ◽  
Ariane Gaspar Santos ◽  
Elba Lúcia Cavalcanti de Amorim ◽  
Silene Carneiro do Nascimento ◽  
Ulysses Paulino de Albuquerque

In this study, we describe the medicinal plants that have been reported to be antitumor agents and that have been used in ethnobotanic research in Brazil to answer the following questions: what is the abundance of plants reported to be antitumor in Brazil? Have the plant species used for tumor treatment in traditional Brazilian medicine been sufficiently examined scientifically? Our analysis included papers published between 1980 and 2008. A total of 84 medicinal plant species were reported to be used for cancer and tumor prevention or treatment; 69.05% of these were cited as being used for the treatment of tumors and cancer in general and 30.95% for specific tumors or cancers. The plants that were cited at a higher frequency wereAloe vera,Euphorbia tirucalli, andTabebuia impetiginosa. At least, one pharmacological study was found for 35.71% of the species. Majority of the studies selected were conducted in rural communities and urban areas and in areas with traditional healers in Brazil. We found the following molecules to be the most studied in vitro and in vivo: silibinin, β-lapachone, plumbagin and capsaicin. The species addressed here constitute interesting objects for future studies to various professionals in the field of natural products.


2014 ◽  
Vol 998-999 ◽  
pp. 291-295 ◽  
Author(s):  
Zhen Yu Shi ◽  
Yong Qiang Li

In order to search for new structural modification strategies on quercetin, we have designed and synthesized a series of quercetin derivatives. Several novel quercetin derivatives displayed potent protect effect on H2O2-induced injury in PC12 cells. In the recent study, we investigated the effect of 3,3',4',5,7-pentahydroxyflavone 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-1-benzopyran-4-one (HPS5) on the apoptosis of PC12 cells in vitro. We used neuronal PC12 cell line to study the regulation role of HPS5 in H2O2 induced cell apoptosis. MTT assay was used for detection the proliferation of PC12 cells upon H2O2 treatment. PC12 cell nuclear morphological change was detected with Hoechst 33258 staining. The antioxidative capacity was judged by SOD determinations. The protein levels of Bax and Bcl-2 were deteanined by Western blotting. Our results demonstrated that Quercetin derivatives HPS5 can prevent and protect against H2O2-induced injury in PC12 cells. Together, our studies provided new insights activities of quercetin, and may contribute to pharmacological study of quercetin in future research.


Sign in / Sign up

Export Citation Format

Share Document