scholarly journals Comparison of three sampling methods for small-bodied fish in lentic nearshore and open water habitats

2021 ◽  
Vol 193 (5) ◽  
Author(s):  
Joseph E. Merz ◽  
Jesse T. Anderson ◽  
Jesse Wiesenfeld ◽  
Steven C. Zeug

AbstractWe performed a preliminary evaluation of a mobile sampling platform with adjustable push net and live box (Platform) against two common methods for sampling small-bodied fish (i.e., 10–100 mm) in two distinct lentic habitats. Nearshore (NS) littoral habitat was sampled by Platform and beach seine, and open water (OW) pelagic habitat by Platform and Kodiak trawl. Our goal was to evaluate the Platform’s ability to describe fish assemblage structure across habitat types in contrast to common techniques restricted to single habitat types that are less comparable due to gear-specific bias. Platform sample speed had a significant positive effect on recapture efficiency of both nearly neutrally buoyant objects and marked fish. Marked fish recapture efficiencies were similar for Platform in NS and OW, indicating similar efficiency across habitat types. Platform capture efficiency was similar to beach seine and greater than Kodiak trawl. With similar sampling time, the Platform collected more individuals and taxa in NS relative to beach seine and in OW relative to Kodiak trawl. Greater taxa detection by the Platform suggests that it may be effective at detecting species that are numerically rare in specific habitats when compared to these methods. Fish CPUE was significantly greater NS regardless of technique. However, by using the Platform, there is greater confidence that this difference was reliable and not a gear selectivity artifact. Overall, this preliminary study demonstrates the Platform’s potential to collect standardized data across NS and OW habitats, track ontogenetic habitat shifts, and detect differences in small-bodied fish taxa richness, relative abundance, and density between NS and OW habitats. Continued experimentation beyond a single reservoir and fish size range is required before consensus can be established regarding the utility of this new push net design.

2018 ◽  
Vol 285 (1890) ◽  
pp. 20181971 ◽  
Author(s):  
Caleb J. Axelrod ◽  
Frédéric Laberge ◽  
Beren W. Robinson

Variation in spatial complexity and foraging requirements between habitats can impose different cognitive demands on animals that may influence brain size. However, the relationship between ecologically related cognitive performance and brain size is not well established. We test whether variation in relative brain size and brain region size is associated with habitat use within a population of pumpkinseed sunfish composed of different ecotypes that inhabit either the structurally complex shoreline littoral habitat or simpler open-water pelagic habitat. Sunfish using the littoral habitat have on average 8.3% larger brains than those using the pelagic habitat. We found little difference in the proportional sizes of five brain regions between ecotypes. The results suggest that cognitive demands on sunfish may be reduced in the pelagic habitat given no habitat-specific differences in body condition. They also suggest that either a short divergence time or physiological processes may constrain changes to concerted, global modifications of brain size between sunfish ecotypes.


2018 ◽  
Vol 29 ◽  
pp. 27-39
Author(s):  
István Gyulai ◽  
Csilla Lakatos ◽  
János Tamás Kundrát ◽  
Zsuzsanna Balogh ◽  
Edina Simon ◽  
...  

We assessed the usefulness of Cladocera remains for establishing the ecological status of oxbows and also tested the association of Cladocera species with various vegetation types. Cladocera remains were collected from the surface sediment of four habitat types (tangled vegetation, open water, reeds and tunnels) and 15 physical and chemical parameters of surface water were studied. In the surface sediment samples, we identified 32 Cladocera taxa. There was a significant difference in the number of species amongst habitat types as per ANOVA. The benthic and plant associated Cladocera communities of reeds, tangled vegetation, open water and tunnels were clearly separated from each other by NMDS ordination. CCA showed that habitat types had characteristic Cladocera species: Pleuroxus species were frequent in the tangled vegetation habitat, while Chydorus species were frequent in the open water. Remarkably, in reeds, Bosmina species were frequent, although these species are usually common in open water. Specimens of the Alona genus were found everywhere. Our findings suggest that the remains of Cladocera species may be useful indicators to assess and monitor the structure of freshwater lakes.


Author(s):  
Jong-Yun Choi ◽  
Kwang-Seuk Jeong ◽  
Seong-Ki Kim ◽  
Gea-Jae Joo

AbstractMacrophytes play a major role in the structuring of aquatic environments, and create diverse microhabitats. Therefore, these plants represent an important factor regulating the zooplankton biomass, taxonomic composition, and distribution in freshwater ecosystems. In the current study, we examined the effects of the structural heterogeneity provided by various macrophytes. We identified four habitat types in this study: (1) open water (without macrophytes), (2) the helophyte zone, (3) the pleustophyte zone, and (4) the mixed vegetation zone (containing pleustophytes, nymphaeids, and elodeids). We tested the hypothesis that complex habitat structures support large zooplankton assemblages. Specifically, we collected zooplankton samples from a total of 119 sampling points in the Upo Wetlands, South Korea, during the spring and autumn of 2009. The largest zooplankton assemblage was found in the mixed macrophyte zone, followed by the helophyte and pleustophyte zones. The pleustophyte zone supported larger zooplankton assemblages during autumn compared to spring. Differences in zooplankton assemblages were considered to be strongly related to seasonal variation in the development and growth of pleustophytes. However, two-way ANOVA revealed that seasons had no significant influence on the zooplankton density and diversity. Instead, different habitat types substantially determined zooplankton characteristics. In conclusion, we demonstrated that wetland areas with high macrophyte species diversity contribute toward higher zooplankton diversity.


2013 ◽  
Vol 80 (1) ◽  
pp. 104-116 ◽  
Author(s):  
David Verdiell-Cubedo ◽  
Mar Torralva ◽  
Ana Ruiz-Navarro ◽  
Francisco J. Oliva-Paterna

Check List ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. 1936
Author(s):  
Dana R. Denson ◽  
Andrew K. Rasmussen ◽  
Steven C. Harris

A field survey of caddisflies of the Chipola River basin in Florida and Alabama was carried out from 2006 through 2012. Adults were collected at 54 sites. Most were stream collections, but three were lakes. In total, 122 samples were taken. Approximately 32,000 individuals were identified, comprising 143 species, 40 genera, and 18 families. Two species represent new Florida state records. Three species are new to science. The majority of species were Leptoceridae, Hydroptilidae, Hydropsychidae, and Polycentropodidae. Most abundant families were Hydroptilidae, Leptoceridae, Hydropsychidae, and Psychomyiidae. A few species/families were largely or entirely confined to specific water body and habitat types, but most were broadly distributed. There was no apparent correlation between stream size and taxa richness. Rarer habitat-specialists were more commonly found in small tributaries than main stem sites. In general, there was a decrease in taxa richness from upstream to downstream in the river’s main stem.


2008 ◽  
Vol 6 (2) ◽  
pp. 257-266 ◽  
Author(s):  
Sandra Bibiana Correa

I investigated changes in abundance and spatial distribution of medium- and large-sized fishes (>100 mm) in an oxbow lake of the lower Apaporis River, Colombian Amazon, across three seasons (falling, low, and rising water). Fifty-three species in 13 families were collected from six habitats: lagoon channels, stream, flooded forests, isolated shrub patches, muddy beaches, and rocks. Abundance, biomass, and species richness were higher during the rising-water season and lower during falling-water season. Correspondence analysis (CA) showed that fish assemblages were associated to two basic habitat types. One assemblage of fishes was associated with densely vegetated and structurally complex habitats (flooded forest, lagoon channels, stream, and isolated shrub patches), and a second assemblage of fishes was associated with muddy beaches. These assemblages persisted despite seasonal fluctuations in water level. Species in the structurally complex habitats assemblage were mostly omnivores, whereas the beach habitat assemblage included mainly piscivores and detritivores. Results from this study suggest that overall abundance of fishes in habitats within and surrounding Taraira Lake is highly variable among seasons, but species habitat affinity is maintained through seasons.


2019 ◽  
Vol 43 (7) ◽  
pp. 1722-1745 ◽  
Author(s):  
Terill A. Hollweg ◽  
Mary C. Christman ◽  
Just Cebrian ◽  
Bryan P. Wallace ◽  
Scott L. Friedman ◽  
...  

Abstract Estuaries in the northern Gulf of Mexico (GOM) provide habitat for many ecologically, commercially, and recreationally important fish and crustacean species (i.e., nekton), but patterns of nekton abundance and community assemblages across habitat types, salinity zones, and seasons have not been described region-wide. Recognizing the wealth of information collected from previous and ongoing field sampling efforts, we developed a meta-analytical approach to aggregate nekton density data from separate studies (using different gear types) that can be used to answer key research questions. We then applied this meta-analytical approach to separate nekton datasets from studies conducted in the Gulf of Mexico to summarize patterns in nekton density across and within several estuarine habitat types, including marsh, oyster reefs, submerged aquatic vegetation (SAV), and open-water non-vegetated bottom (NVB). The results of the meta-analysis highlighted several important patterns of nekton use associated with these habitat types. Nekton densities were higher in structured estuarine habitats (i.e., marsh, oyster reefs, SAV) than in open-water NVB habitat. Marsh and SAV community assemblages were relatively similar to each other, but different from those associated with open-water NVB and oyster habitats. Densities of commercially and recreationally important crustacean and fish species were highest in saline marshes, thus demonstrating the importance of this habitat in the northern GOM. The results of our meta-analysis are generally consistent with previous site-specific studies in the region (many of which were included in the meta-analysis) and provide further evidence for these patterns at a regional scale. This meta-analytical approach is easy to implement for diverse research and management purposes, and provides the opportunity to advance understanding of the value and role of coastal habitats to nekton communities.


2017 ◽  
Vol 114 (37) ◽  
pp. 9912-9917 ◽  
Author(s):  
Matthew M. Guzzo ◽  
Paul J. Blanchfield ◽  
Michael D. Rennie

There is a pressing need to understand how ecosystems will respond to climate change. To date, no long-term empirical studies have confirmed that fish populations exhibit adaptive foraging behavior in response to temperature variation and the potential implications this has on fitness. Here, we use an unparalleled 11-y acoustic telemetry, stable isotope, and mark–recapture dataset to test if a population of lake trout (Salvelinus namaycush), a cold-water stenotherm, adjusted its use of habitat and energy sources in response to annual variations in lake temperatures during the open-water season and how these changes translated to the growth and condition of individual fish. We found that climate influenced access to littoral regions in spring (data from telemetry), which in turn influenced energy acquisition (data from isotopes), and growth (mark–recapture data). In more stressful years, those with shorter springs and longer summers, lake trout had reduced access to littoral habitat and assimilated less littoral energy, resulting in reduced growth and condition. Annual variation in prey abundance influenced lake trout foraging tactics (i.e., the balance of the number and duration of forays) but not the overall time spent in littoral regions. Lake trout greatly reduced their use of littoral habitat and occupied deep pelagic waters during the summer. Together, our results provide clear evidence that climate-mediated behavior can influence the dominant energy pathways of top predators, with implications ranging from individual fitness to food web stability.


1995 ◽  
Vol 1995 (1) ◽  
pp. 391-397
Author(s):  
William D. Van Derveer ◽  
Royal J. Nadeau ◽  
Georgia L. Case

ABSTRACT A pipeline rupture during the winter of 1993 released an undetermined amount of refined fuel into a small stream on the Flathead Indian Reservation in Montana. A screening-level bioassessment was performed in conjunction with supporting sediment and water analytical chemistry, to provide a preliminary evaluation of the effects of the spill and subsequent remedial response actions on the benthic community. A variety of community-level metrics were compared to the habitat scores to evaluate the biological condition of each station sampled relative to the reference, thereby isolating effects related to contaminant release from those due to background habitat conditions. A comparison of taxa richness and Ephemeroptera: Plecoptera: Tricoptera (EPT) Index values from March 1993 to March 1994 indicated partial recovery at the rupture point after intensive soil cleanup and remediation activities. Approximately one year following the spill, the rupture point exhibited 60 and 75 percent recovery respectively in taxa richness and EPT Index. At farther downstream stations, ≤15 and <10 percent recovery in taxa richness and EPT Index respectively were observed.


Sign in / Sign up

Export Citation Format

Share Document