scholarly journals Flow cytometric approach to evaluate the impact of hydro-technical concrete compounds’ release to the freshwater microbiome

2021 ◽  
Vol 193 (11) ◽  
Author(s):  
Barbara Wojtasik ◽  
Małgorzata Zbawicka ◽  
Lucyna Grabarczyk ◽  
Wojciech Juzwa

AbstractThe aim of this research was to test the potential of applying a flow cytometric procedure to evaluate the impact of concrete compounds’ release to the freshwater microbiome. Cells from the collected samples were stained with a fluorogenic redox indicator dye that measures the redox potential of microbial cells. This novel approach was combined with the assessment of microorganisms’ penetration into the internal structures of concrete using the Rose Bengal sodium salt staining. Rose Bengal staining revealed an intense fouling of the upper and side walls of the concrete cubes and also indicated the penetration of microorganisms inside the concrete as observed for the cubes’ cross-sections. Flow cytometric cellular redox potential measurement revealed high percentages of active cells within the concrete’s porous structures and in non-exposed water (32.7% and 30.2% of active cells) versus samples from exposed water and concrete’s outer surfaces (6.8%, 6.1%, and 3.3% of active cells). The results demonstrated a detrimental impact of hydro-technical concrete on the vitality of microbial cells within the freshwater environment. Tested protocol by analyzing the physiology of microbial cells improved the functional description of complex communities to evaluate the fate of contaminants present in the concrete-based hydro-technical infrastructure.

2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


2019 ◽  
Vol 34 (32) ◽  
pp. 1950259 ◽  
Author(s):  
S. M. Troshin ◽  
N. E. Tyurin

We comment briefly on relations between the elastic and inelastic cross-sections valid for the shadow and reflective modes of the elastic scattering. Those are based on the unitarity arguments. It is shown that the redistribution of the probabilities of the elastic and inelastic interactions (the form of the inelastic overlap function becomes peripheral) under the reflective scattering mode can lead to increasing ratio of [Formula: see text] at the LHC energies. In the shadow scattering mode, the mechanism of this increase is a different one, since the impact parameter dependence of the inelastic interactions probability is central in this mode. A short notice is also given on the slope parameter and the leading contributions to its energy dependence in both modes.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


2021 ◽  
Author(s):  
Alexander Subbotin ◽  
Samin Aref

AbstractWe study international mobility in academia, with a focus on the migration of published researchers to and from Russia. Using an exhaustive set of over 2.4 million Scopus publications, we analyze all researchers who have published with a Russian affiliation address in Scopus-indexed sources in 1996–2020. The migration of researchers is observed through the changes in their affiliation addresses, which altered their mode countries of affiliation across different years. While only 5.2% of these researchers were internationally mobile, they accounted for a substantial proportion of citations. Our estimates of net migration rates indicate that while Russia was a donor country in the late 1990s and early 2000s, it has experienced a relatively balanced circulation of researchers in more recent years. These findings suggest that the current trends in scholarly migration in Russia could be better framed as brain circulation, rather than as brain drain. Overall, researchers emigrating from Russia outnumbered and outperformed researchers immigrating to Russia. Our analysis on the subject categories of publication venues shows that in the past 25 years, Russia has, overall, suffered a net loss in most disciplines, and most notably in the five disciplines of neuroscience, decision sciences, mathematics, biochemistry, and pharmacology. We demonstrate the robustness of our main findings under random exclusion of data and changes in numeric parameters. Our substantive results shed light on new aspects of international mobility in academia, and on the impact of this mobility on a national science system, which have direct implications for policy development. Methodologically, our novel approach to handling big data can be adopted as a framework of analysis for studying scholarly migration in other countries.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 758
Author(s):  
Cibi Pranav ◽  
Minh-Tan Do ◽  
Yi-Chang Tsai

High Friction Surfaces (HFS) are applied to increase friction capacity on critical roadway sections, such as horizontal curves. HFS friction deterioration on these sections is a safety concern. This study deals with characterization of the aggregate loss, one of the main failure mechanisms of HFS, using texture parameters to study its relationship with friction. Tests are conducted on selected HFS spots with different aggregate loss severity levels at the National Center for Asphalt Technology (NCAT) Test Track. Friction tests are performed using a Dynamic Friction Tester (DFT). The surface texture is measured by means of a high-resolution 3D pavement scanning system (0.025 mm vertical resolution). Texture data are processed and analyzed by means of the MountainsMap software. The correlations between the DFT friction coefficient and the texture parameters confirm the impact of change in aggregates’ characteristics (including height, shape, and material volume) on friction. A novel approach to detect the HFS friction coefficient transition based on aggregate loss, inspired by previous works on the tribology of coatings, is proposed. Using the proposed approach, preliminary outcomes show it is possible to observe the rapid friction coefficient transition, similar to observations at NCAT. Perspectives for future research are presented and discussed.


2021 ◽  
Vol 13 (5) ◽  
pp. 874
Author(s):  
Yu Chen ◽  
Mohamed Ahmed ◽  
Natthachet Tangdamrongsub ◽  
Dorina Murgulet

The Nile River stretches from south to north throughout the Nile River Basin (NRB) in Northeast Africa. Ethiopia, where the Blue Nile originates, has begun the construction of the Grand Ethiopian Renaissance Dam (GERD), which will be used to generate electricity. However, the impact of the GERD on land deformation caused by significant water relocation has not been rigorously considered in the scientific research. In this study, we develop a novel approach for predicting large-scale land deformation induced by the construction of the GERD reservoir. We also investigate the limitations of using the Gravity Recovery and Climate Experiment Follow On (GRACE-FO) mission to detect GERD-induced land deformation. We simulated three land deformation scenarios related to filling the expected reservoir volume, 70 km3, using 5-, 10-, and 15-year filling scenarios. The results indicated: (i) trends in downward vertical displacement estimated at −17.79 ± 0.02, −8.90 ± 0.09, and −5.94 ± 0.05 mm/year, for the 5-, 10-, and 15-year filling scenarios, respectively; (ii) the western (eastern) parts of the GERD reservoir are estimated to move toward the reservoir’s center by +0.98 ± 0.01 (−0.98 ± 0.01), +0.48 ± 0.00 (−0.48 ± 0.00), and +0.33 ± 0.00 (−0.33 ± 0.00) mm/year, under the 5-, 10- and 15-year filling strategies, respectively; (iii) the northern part of the GERD reservoir is moving southward by +1.28 ± 0.02, +0.64 ± 0.01, and +0.43 ± 0.00 mm/year, while the southern part is moving northward by −3.75 ± 0.04, −1.87 ± 0.02, and −1.25 ± 0.01 mm/year, during the three examined scenarios, respectively; and (iv) the GRACE-FO mission can only detect 15% of the large-scale land deformation produced by the GERD reservoir. Methods and results demonstrated in this study provide insights into possible impacts of reservoir impoundment on land surface deformation, which can be adopted into the GERD project or similar future dam construction plans.


2013 ◽  
Vol 13 (15) ◽  
pp. 7875-7894 ◽  
Author(s):  
I. El Haddad ◽  
B. D'Anna ◽  
B. Temime-Roussel ◽  
M. Nicolas ◽  
A. Boreave ◽  
...  

Abstract. As part of the FORMES summer 2008 experiment, an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) was deployed at an urban background site in Marseille to investigate the sources and aging of organic aerosols (OA). France's second largest city and the largest port in the Mediterranean, Marseille, provides a locale that is influenced by significant urban industrialized emissions and an active photochemistry with very high ozone concentrations. Particle mass spectra were analyzed by positive matrix factorization (PMF2) and the results were in very good agreement with previous apportionments obtained using a chemical mass balance (CMB) approach coupled to organic markers and metals (El Haddad et al., 2011a). AMS/PMF2 was able to identify for the first time, to the best of our knowledge, the organic aerosol emitted by industrial processes. Even with significant industries in the region, industrial OA was estimated to contribute only ~ 5% of the total OA mass. Both source apportionment techniques suggest that oxygenated OA (OOA) constitutes the major fraction, contributing ~ 80% of OA mass. A novel approach combining AMS/PMF2 data with 14C measurements was applied to identify and quantify the fossil and non-fossil precursors of this fraction and to explicitly assess the related uncertainties. Results show with high statistical confidence that, despite extensive urban and industrial emissions, OOA is overwhelmingly non-fossil, formed via the oxidation of biogenic precursors, including monoterpenes. AMS/PMF2 results strongly suggest that the variability observed in the OOA chemical composition is mainly driven in our case by the aerosol photochemical age. This paper presents the impact of photochemistry on the increase of OOA oxygenation levels, formation of humic-like substances (HULIS) and the evolution of α-pinene SOA (secondary OA) components.


2000 ◽  
Author(s):  
Dennis A. Siginer ◽  
Mario F. Letelier

Abstract A survey of secondary flows of viscoelastic liquids in straight tubes is given including recent work pointing at striking analogies with transversal deformations associated with the simple shearing of solid materials. The importance and implications of secondary flows of viscoelastic fluids in heat transfer enhancement are explored together with the difficulties in detecting weak secondary flows (dilute, weakly viscoelastic solutions) in a laboratory setting. Recent new work by the author and colleagues which explores for the first time the structure of the secondary flow field in the pulsating flow of a constitutively nonlinear simple fluid, whose structure is defined by a series of nested integrals over semi-infinite time domains, in straight tubes of arbitrary cross-sections is summarized. The transversal field arises at the second order of the perturbation of the nonlinear constitutive structure, and is driven by first order terms which define the linearly viscoelastic longitudinal flow in the hierarchy of superposed linear flows stemming from the perturbation of the constitutive structure. Arbitrary conduit contours are obtained through a novel approach to the concept of domain perturbation. Time averaged, mean secondary flow streamline contours are presented for the first time for triangular, square and hexagonal pipes.


Author(s):  
Dennis J. Frost

How does a small provincial city in southern Japan become the site of a world-famous wheelchair marathon that has been attracting the best international athletes since 1981? This book answers the question and addresses the histories of individuals, institutions, and events — the 1964 Paralympics, the FESPIC Games, the Ōita International Wheelchair Marathon, the Nagano Winter Paralympics, and the 2021 Tokyo Summer Games that played important roles in the development of disability sports in Japan. Sporting events in the postwar era, the book shows, have repeatedly served as forums for addressing the concerns of individuals with disabilities. The book provides new insights on the cultural and historical nature of disability and demonstrates how sporting events have challenged some stigmas associated with disability, while reinforcing or generating others. The book analyzes institutional materials and uses close readings of media, biographical sources, and interviews with Japanese athletes to highlight the profound — though often ambiguous — ways in which sports have shaped how postwar Japan has perceived and addressed disability. The book's novel approach highlights the importance of the Paralympics and the impact that disability sports have had on Japanese society.


2017 ◽  
Vol 56 (5) ◽  
pp. 959-972 ◽  
Author(s):  
Christian Krogh ◽  
Mathias H. Jungersen ◽  
Erik Lund ◽  
Esben Lindgaard

Sign in / Sign up

Export Citation Format

Share Document