Recognizing and managing construction land reduction barriers for sustainable land use in China

Author(s):  
Jia-He Zhou ◽  
Yu-Ming Zhu ◽  
Lei He ◽  
Hao-Jing Song ◽  
Bing-Xu Mu ◽  
...  
2019 ◽  
Vol 12 (1) ◽  
pp. 265
Author(s):  
Guan Li ◽  
Zhongguo Xu ◽  
Cifang Wu ◽  
Yuefei Zhuo ◽  
Xinhua Tong ◽  
...  

A land-use plan is a core policy tool to curb excessive non-agriculturalization of agricultural land. The effect of plan implementation can affect sustainable land use and regional development. Empirical studies have shown that land development commonly and frequently fails to conform to land-use plans. However, neither qualitative nor quantitative studies are conducted to comprehensively explore the reasons for zoning–land use mismatch. To help bridge this gap, this study explored to what extent a plan has been implemented and what factors have affected zoning–land use mismatch. A new deviation discriminant framework of planning implementation was presented. Moreover, the logistics model was applied to discuss which factors substantially affect the zoning–land use mismatch. The plan implementation results were divided into the conformed, exceeded and unused areas. The general land-use plan failed in its spatial control over rural settlements and other built-up lands, with both more than 90% of the newly added construction land beyond zoning. In addition, the newly added construction land of rural settlements, other built-up lands, and transportation lands all exceeded the quota control. Furthermore, the physical factors of distance from the river, the elevation, the slope and the level, and the social-economic factors of the gross domestic product, the fiscal revenue, the fixed assets investments, and the rank of town have prominent effects on zoning–land use mismatch. Enhancing the flexibility of the land-use plan and strengthening the relationship between planning quotas and spatial zoning in the future are necessary to promote the effect of plan implementation.


2020 ◽  
Vol 12 (5) ◽  
pp. 1835
Author(s):  
Anja Schmitz ◽  
Bettina Tonn ◽  
Ann-Kathrin Schöppner ◽  
Johannes Isselstein

Engaging farmers as citizen scientists may be a cost-efficient way to answering applied research questions aimed at more sustainable land use. We used a citizen science approach with German horse farmers with a dual goal. Firstly, we tested the practicability of this approach for answering ‘real-life’ questions in variable agricultural land-use systems. Secondly, we were interested in the knowledge it can provide about locomotion of horses on pasture and the management factors influencing this behaviour. Out of 165 volunteers, we selected 40 participants to record locomotion of two horses on pasture and provide information on their horse husbandry and pasture management. We obtained complete records for three recording days per horse from 28 participants, resulting in a dataset on more individual horses than any other Global Positioning System study published in the last 30 years. Time spent walking was greatest for horses kept in box-stall stables, and walking distance decreased with increasing grazing time. This suggests that restrictions in pasture access may increase stress on grass swards through running and trampling, severely challenging sustainable pasture management. Our study, involving simple technology, clear instructions and rigorous quality assessment, demonstrates the potential of citizen science actively involving land managers in agricultural research.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1955
Author(s):  
Mingxi Zhang ◽  
Guangzhi Rong ◽  
Aru Han ◽  
Dao Riao ◽  
Xingpeng Liu ◽  
...  

Land use change is an important driving force factor affecting the river water environment and directly affecting water quality. To analyze the impact of land use change on water quality change, this study first analyzed the land use change index of the study area. Then, the study area was divided into three subzones based on surface runoff. The relationship between the characteristics of land use change and the water quality grade was obtained by grey correlation analysis. The results showed that the land use types changed significantly in the study area since 2000, and water body and forest land were the two land types with the most significant changes. The transfer rate is cultivated field > forest land > construction land > grassland > unused land > water body. The entropy value of land use information is represented as Area I > Area III > Area II. The shift range of gravity center is forest land > grassland > water body > unused land > construction land > cultivated field. There is a strong correlation between land use change index and water quality, which can be improved and managed by changing the land use type. It is necessary to establish ecological protection areas or functional areas in Area I, artificial lawns or plantations shall be built in the river around the water body to intercept pollutants from non-point source pollution in Area II, and scientific and rational farming in the lower reaches of rivers can reduce non-point source pollution caused by farming.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Jie Gao ◽  
Xuguang Tang ◽  
Shiqiu Lin ◽  
Hongyan Bian

The ecosystem services (ESs) provided by mountain regions can bring about benefits to people living in and around the mountains. Ecosystems in mountain areas are fragile and sensitive to anthropogenic disturbance. Understanding the effect of land use change on ESs and their relationships can lead to sustainable land use management in mountain regions with complex topography. Chongqing, as a typical mountain region, was selected as the site of this research. The long-term impacts of land use change on four key ESs (i.e., water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)) and their relationships were assessed from the past to the future (at five-year intervals, 1995–2050). Three future scenarios were constructed to represent the ecological restoration policy and different socioeconomic developments. From 1995 to 2015, WY and SC experienced overall increases. CS and HQ increased slightly at first and then decreased significantly. A scenario analysis suggested that, if the urban area continues to increase at low altitudes, by 2050, CS and HQ are predicted to decrease moderately. However, great improvements in SC, HQ, and CS are expected to be achieved by the middle of the century if the government continues to make efforts towards vegetation restoration on the steep slopes.


Author(s):  
Liqin Zhang ◽  
Jiangfeng Li ◽  
Chunfang Kong ◽  
Liping Qu ◽  
Jianghong Zhu ◽  
...  

SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 173-185 ◽  
Author(s):  
R. Zornoza ◽  
J. A. Acosta ◽  
F. Bastida ◽  
S. G. Domínguez ◽  
D. M. Toledo ◽  
...  

Abstract. Soil quality (SQ) assessment has long been a challenging issue, since soils present high variability in properties and functions. This paper aims to increase the understanding of SQ through the review of SQ assessments in different scenarios providing evidence about the interrelationship between SQ, land use and human health. There is a general consensus that there is a need to develop methods to assess and monitor SQ for assuring sustainable land use with no prejudicial effects on human health. This review points out the importance of adopting indicators of different nature (physical, chemical and biological) to achieve a holistic image of SQ. Most authors use single indicators to assess SQ and its relationship with land uses – soil organic carbon and pH being the most used indicators. The use of nitrogen and nutrient content has resulted sensitive for agricultural and forest systems, together with physical properties such as texture, bulk density, available water and aggregate stability. These physical indicators have also been widely used to assess SQ after land use changes. The use of biological indicators is less generalized, with microbial biomass and enzyme activities being the most selected indicators. Although most authors assess SQ using independent indicators, it is preferable to combine some of them into models to create a soil quality index (SQI), since it provides integrated information about soil processes and functioning. The majority of revised articles used the same methodology to establish an SQI, based on scoring and weighting of different soil indicators, selected by means of multivariate analyses. The use of multiple linear regressions has been successfully used for forest land use. Urban soil quality has been poorly assessed, with a lack of adoption of SQIs. In addition, SQ assessments where human health indicators or exposure pathways are incorporated are practically inexistent. Thus, further efforts should be carried out to establish new methodologies to assess soil quality not only in terms of sustainability, productivity and ecosystem quality but also human health. Additionally, new challenges arise with the use and integration of stable isotopic, genomic, proteomic and spectroscopic data into SQIs.


Sign in / Sign up

Export Citation Format

Share Document