scholarly journals Complex eco-evolutionary dynamics induced by the coevolution of predator–prey movement strategies

Author(s):  
Christoph Netz ◽  
Hanno Hildenbrandt ◽  
Franz J. Weissing

AbstractThe coevolution of predators and prey has been the subject of much empirical and theoretical research that produced intriguing insights into the interplay of ecology and evolution. To allow for mathematical analysis, models of predator–prey coevolution are often coarse-grained, focussing on population-level processes and largely neglecting individual-level behaviour. As selection is acting on individual-level properties, we here present a more mechanistic approach: an individual-based simulation model for the coevolution of predators and prey on a fine-grained resource landscape, where features relevant for ecology (like changes in local densities) and evolution (like differences in survival and reproduction) emerge naturally from interactions between individuals. Our focus is on predator–prey movement behaviour, and we present a new method for implementing evolving movement strategies in an efficient and intuitively appealing manner. Throughout their lifetime, predators and prey make repeated movement decisions on the basis of their movement strategies. Over the generations, the movement strategies evolve, as individuals that successfully survive and reproduce leave their strategy to more descendants. We show that the movement strategies in our model evolve rapidly, thereby inducing characteristic spatial patterns like spiral waves and static spots. Transitions between these patterns occur frequently, induced by antagonistic coevolution rather than by external events. Regularly, evolution leads to the emergence and stable coexistence of qualitatively different movement strategies within the same population. Although the strategy space of our model is continuous, we often observe the evolution of discrete movement types. We argue that rapid evolution, coexistent movement types, and phase shifts between different ecological regimes are not a peculiarity of our model but a result of more realistic assumptions on eco-evolutionary feedbacks and the number of evolutionary degrees of freedom.

2020 ◽  
Author(s):  
Christoph Netz ◽  
Hanno Hildenbrandt ◽  
Franz J Weissing

The coevolution of predators and prey has been the subject of much empirical and theoretical research, which has produced intriguing insights into the intricacies of eco-evolutionary dynamics. Mechanistically detailed models are rare, however, because the simultaneous consideration of individual-level behaviour (on which natural selection is acting) and the resulting ecological patterns is challenging and typically prevents mathematical analysis. Here we present an individual-based simulation model for the coevolution of predators and prey on a fine-grained resource landscape. Throughout their lifetime, predators and prey make repeated movement decisions on the basis of heritable and evolvable movement strategies. We show that these strategies evolve rapidly, inducing diverse ecological patterns like spiral waves and static spots. Transitions between these patterns occur frequently, induced by coevolution rather than by external events. Regularly, evolution leads to the emergence and stable coexistence of qualitatively different movement strategies. Although the strategy space considered is continuous, we often observe discrete variation. Accordingly, our model includes features of both population genetic and quantitative genetic approaches to coevolution. The model demonstrates that the inclusion of a richer ecological structure and higher number of evolutionary degrees of freedom results in even richer eco-evolutionary dynamics than anticipated previously.


1997 ◽  
Vol 11 (1) ◽  
pp. 112-120 ◽  
Author(s):  
B. E. BEISNER ◽  
E. MCCAULEY ◽  
F. J. WRONA

2017 ◽  
Author(s):  
Frédéric Barraquand ◽  
Ólafur K. Nielsen

AbstractSpecialist predators with oscillating dynamics are often strongly affected by the population dynamics of their prey, yet they do not always participate in a predator-prey cycle. Only those that exert strong population regulation of their prey do so. Inferring the strength and direction of the predator-prey coupling from time series therefore requires contrasting models with top-down versus bottom-up predator-prey dynamics. We examine such population-level coupling using multivariate autoregressive models. The models translate several hypotheses for the joint dynamics of population densities of the Icelandic gyrfalcon Falco rusticolus, and its prey, the rock ptarmigan Lagopus muta. The dynamics of both species are likely not only linked to each other but also to stochastic weather variables acting as confounding factors on the joint dynamics. The classical MAR(1) model, used most often in ecology, predicts that the times series exhibit predator-prey feedback (i.e., Granger causality): the predator helps to explain prey dynamics and the prey helps to explain predator dynamics. Weather, in the form of spring temperature, influences gyrfalcon population growth but not ptarmigan population growth, despite individual-level evidence that ptarmigan chicks can be strongly affected by weather. MAR(2) models, allowing for species to cycle independently from each other, further suggests alternative scenarios where a cyclic prey influence its predator but not the other way around; such bottom-up models produce a better fit but less realistic cross-correlation patterns. Simulations of MAR(1) and MAR(2) models further demonstrate that the top-down MAR(1) models are most likely to be misidentified as bottom-up dynamics than vice-versa. We therefore conclude that predator-prey feedback in the gyrfalcon-ptarmigan system is very likely, though bottom-up dynamics cannot be excluded with certainty. We finally discuss what sort of information is needed to advance the characterization of joint predator-prey dynamics in birds and other vertebrates.


2014 ◽  
Vol 281 (1778) ◽  
pp. 20132851 ◽  
Author(s):  
M. M. Delgado ◽  
K. A. Bartoń ◽  
D. Bonte ◽  
J. M. J. Travis

Dispersal is not a blind process, and evidence is accumulating that individual dispersal strategies are informed in most, if not all, organisms. The acquisition and use of information are traits that may evolve across space and time as a function of the balance between costs and benefits of informed dispersal. If information is available, individuals can potentially use it in making better decisions, thereby increasing their fitness. However, prospecting for and using information probably entail costs that may constrain the evolution of informed dispersal, potentially with population-level consequences. By using individual-based, spatially explicit simulations, we detected clear coevolutionary dynamics between prospecting and dispersal movement strategies that differed in sign and magnitude depending on their respective costs. More specifically, we found that informed dispersal strategies evolve when the costs of information acquisition during prospecting are low but only if there are mortality costs associated with dispersal movements. That is, selection favours informed dispersal strategies when the acquisition and use processes themselves were not too expensive. When non-informed dispersal strategies evolve, they do so jointly with the evolution of long dispersal distance because this maximizes the sampling area. In some cases, selection produces dispersal rules different from those that would be ‘optimal’ (i.e. the best possible population performance—in our context quantitatively measured as population density and patch occupancy—among all possible individual movement rules) for the population. That is, on the one hand, informed dispersal strategies led to population performance below its highest possible level. On the other hand, un- and poorly informed individuals nearly optimized population performance, both in terms of density and patch occupancy.


2012 ◽  
Vol 2 (6) ◽  
pp. 738-745 ◽  
Author(s):  
Daniel Grünbaum

Social aggregations such as schools, swarms, flocks and herds occur across a broad diversity of animal species, strongly impacting ecological and evolutionary dynamics of these species and their predators, prey and competitors. The mechanisms through which individual-level responses to neighbours generate group-level characteristics have been extensively investigated both experimentally and using mathematical models. Models of social groups typically adopt a ‘zone’ approach, in which individuals’ movement responses to neighbours are functions of instantaneous relative position. Empirical studies have demonstrated that most social animals such as fish exhibit well-developed spatial memory and other advanced cognitive capabilities. However, most models of social grouping do not explicitly include spatial memory, largely because a tractable framework for modelling acquisition of and response to historical spatial information has been lacking. Using fish schooling as a focal example, this study presents a framework for including cognitive responses to spatial memory in models of social aggregation. The framework utilizes Bayesian estimation parameters that are continuously distributed in time and space as proxies for animals’ spatial memory. The result is a hybrid Lagrangian–Eulerian model in which the effects of cognitive state and behavioural responses to historical spatial data on individual-, group- and population-level distributions of social animals can be explicitly investigated.


2021 ◽  
Vol 27 (5) ◽  
Author(s):  
Diana Adela Martin ◽  
Eddie Conlon ◽  
Brian Bowe

AbstractThis paper aims to review the empirical and theoretical research on engineering ethics education, by focusing on the challenges reported in the literature. The analysis is conducted at four levels of the engineering education system. First, the individual level is dedicated to findings about teaching practices reported by instructors. Second, the institutional level brings together findings about the implementation and presence of ethics within engineering programmes. Third, the level of policy situates findings about engineering ethics education in the context of accreditation. Finally, there is the level of the culture of engineering education. The multi-level analysis allows us to address some of the limitations of higher education research which tends to focus on individual actors such as instructors or remains focused on the levels of policy and practice without examining the deeper levels of paradigm and purpose guiding them. Our approach links some of the challenges of engineering ethics education with wider debates about its guiding paradigms. The main contribution of the paper is to situate the analysis of the theoretical and empirical findings reported in the literature on engineering ethics education in the context of broader discussions about the purpose of engineering education and the aims of reform programmes. We conclude by putting forward a series of recommendations for a socio-technical oriented reform of engineering education for ethics.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 580
Author(s):  
Anna Lena Emonds ◽  
Katja Mombaur

As a whole, human sprinting seems to be a completely periodic and symmetrical motion. This view is changed when a person runs with a running-specific prosthesis after a unilateral amputation. The aim of our study is to investigate differences and similarities between unilateral below-knee amputee and non-amputee sprinters—especially with regard to whether asymmetry is a distracting factor for sprint performance. We established three-dimensional rigid multibody models of one unilateral transtibial amputee athlete and for reference purposes of three non-amputee athletes. They consist of 16 bodies (head, ipper, middle and lower trunk, upper and lower arms, hands, thighs, shanks and feet/running specific prosthesis) with 30 or 31 degrees of freedom (DOFs) for the amputee and the non-amputee athletes, respectively. Six DOFs are associated with the floating base, the remaining ones are rotational DOFs. The internal joints are equipped with torque actuators except for the prosthetic ankle joint. To model the spring-like properties of the prosthesis, the actuator is replaced by a linear spring-damper system. We consider a pair of steps which is modeled as a multiphase problem with each step consisting of a flight, touchdown and single-leg contact phase. Each phase is described by its own set of differential equations. By combining motion capture recordings with a least squares optimal control problem formulation including constraints, we reconstructed the dynamics of one sprinting trial for each athlete. The results show that even the non-amputee athletes showed less symmetrical sprinting than expected when examined on an individual level. Nevertheless, the asymmetry is much more pronounced in the amputee athlete. The amputee athlete applies larger torques in the arm and trunk joints to compensate the asymmetry and experiences a destabilizing influence of the trunk movement. Hence, the inter-limb asymmetry of the amputee has a significant effect on the control of the sprint movement and the maintenance of an upright body position.


Sign in / Sign up

Export Citation Format

Share Document