Damage Analysis of Chemically Corroded Sandstone Under Cyclic Impacts and Axial Static Pressure

Author(s):  
Zhuyu Zhao ◽  
Jinchun Xue ◽  
Jiefang Jin ◽  
Li Tan ◽  
Ruoyan Cai ◽  
...  
Author(s):  
Fremmy Raymond Agustinus

Desain penyejuk udara juga dapat diterapkan di bidang kesehatan, dengan standar Cleanroom dapat diperoleh suhu, kelembaban, kenyamanan dan kebersihan yang dibutuhkan untuk ruang steril (ruang bedah). Perancangan pendingin udara dalam hal ini dilakukan dengan menentukan beban pendinginan yang diperlukan untuk ruang steril (ruang bedah), kemudian menentukan ukuran ducting, jalur ducting, dan jumlah penggunaan ducting. Desain ini menggabungkan unit split saluran yang dimodifikasi, kipas booster, filter pra, filter medium, dan filter HEPA dengan menggunakan saluran aluminium preinsulated sebagai saluran udara. Desain dilakukan dengan menggunakan perangkat lunak AutoCAD 2012, Design Tools Duct Sizer, dan Microsoft Excel. Dari hasil perhitungan dan desain didapatkan kebutuhan kapasitas 3 ruang bedah yaitu ducted ducted 100.000 BTUH sebanyak 3 unit, booster fan 3.3 - 4 Di WG sebanyak 3 unit, pre filter 24 "x 24" x 2 "6 set, filter menengah 610 x 610 x 290 mm 6 set, dan filter HEPA 1220 x 610 x 70 mm 12. Untuk ruang steril, tekanan statis yang dihasilkan oleh unit pendingin harus lebih besar daripada tekanan statis yang dihasilkan dari unit yang ada. di ruang semi steril. Dengan kata lain, ruang steril harus memiliki tekanan positif terhadap ruang semi steril. Hal ini dimaksudkan agar udara di ruang semi steril tidak masuk ke ruang steril ketika pintu antar ruangan dibuka. Desain dan perhitungan ruang bedah, suhu nyata yang diperoleh adalah 23 ° C ± 2 ° C dan kelembaban relatif yang diperoleh adalah 60% ± 2%.   Air conditioning design can also be applied in the health field, with cleanroom standard can be obtained temperature, humidity, comfort and hygiene needed for sterile room (surgical room). The design of air conditioning in this case is done by determining the cooling load required for the sterile room (surgical room), then determining the ducting size, ducting path, and the amount of ducting usage. This design combines modified ducted split unit, booster fan, pre filter, medium filter, and HEPA filter by using preinsulated aluminum duct as an air passage. The design is done by using AutoCAD 2012 software, Design Tools Duct Sizer, and Microsoft Excel. From the calculation and design result obtained the capacity requirement of 3 surgical room that is split ducted 100.000 BTUH as many as 3 units, booster fan 3.3 - 4 In WG as many as 3 units, pre filter 24"x 24" x 2" 6 sets, medium filter 610 x 610 x 290 mm 6 sets, and HEPA filter 1220 x 610 x 70 mm 12 sets. For the sterile room, the static pressure generated by the cooling unit shall be larger than the static pressure generated from the unit present in the semi sterile room. In other words, the sterile room must have positive pressure to the semi sterile room. It is intended that the air in the semi sterile room does not enter into the sterile room when the door between room opened. In this surgical room design and calculation, real temperature obtained is 23 °C ± 2 °C and the relative moisture obtained is 60% ± 2%.


1986 ◽  
Vol 84 ◽  
Author(s):  
M.D. Merz ◽  
F. Gerber ◽  
R. Wang

AbstractThe Materials Characterization Center (MCC) at Pacific Northwest Lab- oratory is performing three kinds of corrosion tests for the Basalt Waste Isolation Project (BWIP) to establish the interlaboratory reproducibility and uncertainty of corrosion rates of container materials for high-level nuclear waste. The three types of corrosion tests were selected to address two distinct conditions that are expected in a repository constructed in basalt. An air/steam test is designed to address corrosion during the operational period and static pressure vessel and flowby tests are designed to address corrosion under conditions that bound the condi ring the post-closure period of the repository.The results of tests at reference testing conditions, which were defined to facilitate interlaboratory comparison of data, are presented. Data are reported for the BWIP/MCC-105.5 Air/Steam Test, BWIP/MCC-105.1 Static Pressure Vessel, and BWIP/MC-105.4 Flowby Test. In those cases where data are available from a second laboratory, a statistical analysis of interlaboratory results is reported and expected confidence intervals for mean corrosion rates are given. Other statistical treatment of data include analyses of the effects of vessel-to-vessel variations, test capsule variations for the flowby test, and oven-to-oven variations for air/steam tests.


2020 ◽  
Vol 5 (1) ◽  
pp. 37-41
Author(s):  
Ardit Gjeta ◽  
Lorenc Malka

In this paper, the effect of the outlet surface area of the spiral casing on the performance of a centrifugal fan was investigated using open source CFD software OpenFOAM [1]. An automized loop with RANS and data post-processing is set up using Matlab, for allowing a large number of parameter variations. The effect was analyzed as a function of total pressure loss and static pressure recovery coefficient and on total efficiency as well.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 196-197
Author(s):  
M. T. Islam ◽  
M. A. T. Ali

2018 ◽  
Vol 1 (2) ◽  
pp. 24-39
Author(s):  
A. Farid ◽  
A. Abou El-Azm Aly ◽  
H. Abdallah

Cavitation in pumps is the most severe condition that centrifugal pumps can work in and is leading to a loss in their performance.  Herein, the effect of semi-open centrifugal pump side clearance on the inception of pump cavitation has been investigated.  The input pump pressure has been changed from 80 to 16 kPa and the pump side clearance has been changed from 1 mm to 3 mm at a rotation speed of 1500 rpm. It has been shown that as the total input pressure decreased; the static pressure inside the impeller is reduced while the total pressure in streamwise direction has been reduced, also the pump head is constant with the reduction of the total input pressure until the cavitation is reached. Head is reduced due to cavitation inception; the head is reduced in the case of a closed impeller with a percent of 1.5% while it is reduced with a percent of 0.5% for pump side clearance of 1mm, both are at a pressure of 20 kPa.   Results also showed that the cavitation inception in the pump had been affected and delayed with the increase of the pump side clearance; the cavitation has been noticed to occur at approximate pressures of 20 kPa for side clearance of 1mm, 18 kPa for side clearances of 2mm and 16 kPa for 3mm.


2011 ◽  
Vol 48 (9) ◽  
pp. 474-482
Author(s):  
G. Weilnhammer
Keyword(s):  

2016 ◽  
pp. 514-516
Author(s):  
Martin Bruhns

The massecuite circulates in a loop within the evaporating crystallizing vessel. The massecuite flows upwards through the heating tubes. In the room above the calandria the massecuite flow changes its direction to radial inwards and then to vertical downwards. An impeller in the central tube forces the circulation. Below the calandria the main direction of flow is radially outwards until threads of the massecuite stream enter the heating tubes in upwards direction. Within the tubes heat is transferred to the massecuite. At low temperature differences between heating steam and massecuite and higher levels of the massecuite in the crystallizer vapor bubbles are not found in the tubes. Vapor bubbles can be formed at a massecuite level in the crystallizer where the temperature of the massecuite is higher than the local boiling temperature of water, which depends on the local pressure (including the static pressure of the massecuite at this point) and the boiling point elevation of the mother liquor. The surface tension of the liquid is a resistance against the bubble formation, which has to be overcome by the local superheating i.e. the part of the enthalpy of the massecuite exceeding the local boiling temperature. The formation and the flow of the bubbles change the density of the massecuite/bubbles mixture and has an influence on the massecuite flow. The formation of a vapour bubble is connected with a local drop of the massecuite temperature which changes the local supersaturation. Today the heat transfer into the magma is quite well known but the process of bubble formation is quite unknown. Some basic considerations about the formation of bubbles and its influence on local supersaturation based on calculation of heat and mass balances and models of bubble formation are be given and discussed. Experiments for basic investigations are proposed.


Sign in / Sign up

Export Citation Format

Share Document