Sediment distribution in shallow estuaries at fine scale: in situ evidence of the effects of three-dimensional structural complexity of mangrove pneumatophores

Hydrobiologia ◽  
2017 ◽  
Vol 803 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Shafagh Kamal ◽  
Jan Warnken ◽  
Majid Bakhtiyari ◽  
Shing Yip Lee
2012 ◽  
Vol 9 (5) ◽  
pp. 2885-2914 ◽  
Author(s):  
A. Soloviev ◽  
C. Maingot ◽  
S. Matt ◽  
R. E. Dodge ◽  
S. Lehner ◽  
...  

Abstract. This work is aimed at identifying the origin of fine-scale features on the sea surface in synthetic aperture radar (SAR) imagery with the help of in-situ measurements as well as numerical models (presented in a companion paper). We are interested in natural and artificial features starting from the horizontal scale of the upper ocean mixed layer, around 30–50 m. These features are often associated with three-dimensional upper ocean dynamics. We have conducted a number of studies involving in-situ observations in the Straits of Florida during SAR satellite overpass. The data include examples of sharp frontal interfaces, wakes of surface ships, internal wave signatures, as well as slicks of artificial and natural origin. Atmospheric processes, such as squall lines and rain cells, produced prominent signatures on the sea surface. This data has allowed us to test an approach for distinguishing between natural and artificial features and atmospheric influences in SAR images that is based on a co-polarized phase difference filter.


2021 ◽  
Vol 11 (4) ◽  
pp. 1391
Author(s):  
Yajun Zhang ◽  
Aoshu Xu ◽  
Xin Lv ◽  
Qian Wang ◽  
Caihui Feng ◽  
...  

The development of biofilms and the related changes in porous media in the subsurface cannot be directly observed and evaluated. The primary reason that the mechanism of biofilm clogging in porous media cannot be clearly demonstrated is due to the opacity and structural complexity of three-dimensional pore space. Interest in exploring methods to overcome this limitation has been increasing. In the first part of this review, we introduce the underlying characteristics of biofilm in porous media. Then, we summarize two approaches, non-invasive measurement methods and mathematical simulation strategies, for studying fluid–biofilm–porous medium interaction with spatiotemporal resolution. We also discuss the advantages and limitations of these approaches. Lastly, we provide a perspective on opportunities for in situ monitoring at the field site.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lauriane Ribas-Deulofeu ◽  
Pierre-Alexandre Château ◽  
Vianney Denis ◽  
Chaolun Allen Chen

Structural complexity is an important feature to understand reef resilience abilities, through its role in mediating predator-prey interactions, regulating competition, and promoting recruitment. Most of the current methods used to measure reef structural complexity fail to quantify the contributions of fine and coarse scales of rugosity simultaneously, while other methods require heavy data computation. In this study, we propose estimating reef structural complexity based on high-resolution depth profiles to quantify the contributions of both fine and coarse rugosities. We adapted the root mean square of the deviation from the assessed surface profile (Rq) with polynomials. The efficiency of the proposed method was tested on nine theoretical cases and 50 in situ transects from South Taiwan, and compared to both the chain method and the visual rugosity index commonly employed to characterize reef structural complexity. The Rq indices proposed as rugosity estimators in this study consider multiple levels of reef rugosity, which the chain method and the visual rugosity index fail to apprehend. Furthermore, relationships were found between Rq scores and specific functional groups in the benthic community. Indeed, the fine scale rugosity of the South Taiwan reefs mainly comes from biotic components such as hard corals, while their coarse scale rugosity is essentially provided by the topographic variations that reflect the geological context of the reefs. This approach allows identifying the component of the rugosity that could be managed and which could, ultimately, improve strategies designed for conservation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bàrbara Barceló-Llull ◽  
Ananda Pascual ◽  
Antonio Sánchez-Román ◽  
Eugenio Cutolo ◽  
Francesco d'Ovidio ◽  
...  

After the launch of the Surface Water and Ocean Topography (SWOT) satellite planned for 2022, the region around the Balearic Islands (western Mediterranean Sea) will be the target of several in situ sampling campaigns aimed at validating the first available tranche of SWOT data. In preparation for this validation, the PRE-SWOT cruise in 2018 was conceived to explore the three-dimensional (3D) circulation at scales of 20 km that SWOT aims to resolve, included in the fine-scale range (1–100 km) as defined by the altimetric community. These scales and associated variability are not captured by contemporary nadir altimeters. Temperature and salinity observations reveal a front that separates local Atlantic Water in the northeast from recent Atlantic Water in the southeast, and extends from the surface to ~150 m depth with maximum geostrophic velocities of the order of 0.20 m s−1 and a geostrophic Rossby number that ranges between −0.24 and 0.32. This front is associated with a 3D vertical velocity field characterized by an upwelling cell surrounded by two downwelling cells, one to the east and the other to the west. The upwelling cell is located near an area with high nitrate concentrations, possibly indicating a recent inflow of nutrients. Meanwhile, subduction of chlorophyll-a in the western downwelling cell is detected in glider observations. The comparison of the altimetric geostrophic velocity with the CTD-derived geostrophic velocity, the ADCP horizontal velocity, and drifter trajectories, shows that the present-day resolution of altimetric products precludes the representation of the currents that drive the drifter displacement. The Lagrangian analysis based on these velocities demonstrates that the study region has frontogenetic dynamics not detected by altimetry. Our results suggest that the horizontal component of the flow is mainly geostrophic down to scales of 20 km in the study region and during the period analyzed, and should therefore be resolvable by SWOT and other future satellite-borne altimeters with higher resolutions. In addition, fine-scale features have an impact on the physical and biochemical spatial variability, and multi-platform in situ sampling with a resolution similar to that expected from SWOT can capture this variability.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


Sign in / Sign up

Export Citation Format

Share Document