Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of the seaweed Ulva lactuca cultured in seawater tanks

2008 ◽  
Vol 20 (6) ◽  
pp. 1021-1031 ◽  
Author(s):  
Flower E. Msuya ◽  
Amir Neori
2017 ◽  
Vol 9 (3) ◽  
pp. 233
Author(s):  
Kyriakos Giannoulis ◽  
Dimitrios Bartzialis ◽  
Elpiniki Skoufogianni ◽  
Nicholaos Danalatos

Panicum virgatum could produce cattle feed with lower costs due to the low input requirements and its perennial nature. Dry biomass yield vs. N-P-K nutrient uptake relations as well as the N-mineralization and the N-fertilization recovery fraction for Panicum virgatum (cv. Alamo) were determined under field conditions for four N-fertilization (0, 80, 160 and 240 kg ha-1) and two irrigation levels (0 and 250 mm), οn two soils in central Greece with rather different moisture status. It was found that the dry fodder yield on the aquic soil may reach 14 t ha-1 using supplemental irrigation; while on the xeric soil a lower yield of 9-10 t ha-1 may be produced only under supplemental irrigation. Moreover, the average N, P and K concentration was 1.3%, 0.14% and 1.3% in leaves, and 0.5%, 0.85%, and 1.5% in stems, respectively, showing the very low crop requirements. Furthermore, linear biomass yield-nutrient uptake relationships were found with high R2, pointing to nutrient use efficiency of 132 and 75 kg kg-1, for N and K respectively. The base N-uptake ranged from 71-74 kg ha-1 on the aquic to 60 kg ha-1 or less on the xeric soil. Finally, it was found that N-recovery fraction was 20% on the aquic soil and lower on the xeric. Therefore, it could be conclude that Panicum virgatum seems to be a very promising crop for fodder production and its introduction in land use systems (especially οn aquic soils of similar environments) should be taken into consideration.


1976 ◽  
Vol 87 (2) ◽  
pp. 243-249 ◽  
Author(s):  
T. F. Gately ◽  
D. M. McAleese

SUMMARYThe effects of six amounts (0, 17, 34, 51, 68, 85 kg N/ha) of fertilizer N, applied at sowing time, on the crude protein (N × 6·25) content of barley grain sown as the first, second and fourth or later tillage crop after grazed pasture were studied over three seasons at a total of 126 sites. In addition, non-protein N in the grain was measured at 24 sites.The overall crude protein content was 11·3% without N, increasing to 13·4% with 85 kg N/ha. The first increment of 17 kg N/ha gave the least increase in grain protein content. The year which gave the largest yields gave the lowest grain protein contents and vice versa. The mean grain protein contents without N for 1971–3 inclusive were 10·8, 11·5 and 11·8% respectively.The mean grain protein contents without N when barley was sown as the first, second and fourth or later tillage crop after pasture were 12·6, 11·5 and 10·0% respectively; the corresponding values with 85 kg N/ha were 14·4, 13·9 and 11·8%. There was a positive relationship between grain protein content and lodging, especially in barley sown as the first tillage crop after pasture, where lodging was most severe.Non-protein N was low and only accounted for 5–8% of the total grain N content. The mean grain. N uptake with no fertilizer N applied was 82, 70 and 49 kg/ha in barley sown as the first, second and fourth or later tillage crop respectively. The apparent recovery of fertilizer N was largest in fourth or later barley.


1997 ◽  
Vol 48 (3) ◽  
pp. 305 ◽  
Author(s):  
I. C. R. Holford ◽  
G. J. Crocker

Six treatments were compared for their effects on wheat yields, nitrogen (N) uptake, protein content, and fertiliser N requirements in a long-term rotation study on a black earth and a red clay in northern New South Wales. Three of the treatments were lucerne, subterranean clover, and snail medic, all grown simultaneously from 1988 to 1990 and all followed by 3 years of wheat. The other 3 treatments were biennial rotations of chickpea–wheat and long-fallow–wheat as well as a continuous wheat monoculture, all lasting 6 years. With the exception of the first wheat crop, which experienced very low growing-season rainfall, lucerne was more beneficial than other legumes to following wheat crops in terms of yield, protein content, and fertiliser N requirement. Clover closely followed lucerne in the magnitude of its positive effects, whereas medic and chickpea produced much smaller effects. Because of the amount of N removed in the chickpea grain, it appeared that the small positive effects of chickpea were due to soil N sparing or rapid mineralisation from crop residues rather than any net contribution of N fixation to soil N accretion. Average yields of the 3 wheat crops following lucerne and clover were much higher than average yields 20 years previously following lucerne, even though average yields of continuously grown wheat have declined over the past 20 years. However, lucerne eliminated the need for N fertiliser for no more than 2 following wheat crops, and clover for only the first wheat crop. It appears that the longer duration of lucerne benefits reported in earlier studies was due to the higher background soil N levels as well as the lower yield potential in the earlier years. Nevertheless, lucerne lowered the fertiliser requirement of the third wheat crop by more than 50%. In contrast to lucerne, annual legumes are probably most beneficial if grown in alternate years with wheat. The large benefits of long fallowing particularly on the black earth were apparently caused by its enhancement of soil moisture and mineral N accumulation. However, these N effects were surprisingly large considering the degree of depletion of organic matter in long-fallowed soils.


1982 ◽  
Vol 62 (1) ◽  
pp. 21-30 ◽  
Author(s):  
JOHN E. RICHARDS ◽  
R. J. SOPER

The effect of fertilizer N on yield, protein content and symbiotic N2 fixation in faba beans (Vicia faba L.) was studied with nine field trials during 3 yr. Forage and seed yields of nodulated faba beans were infrequently and unpredictably affected by rate of application at seeding (up to 300 kg N/ha), type of application (34 and 67 kg N/ha surface-broadcast or placed with the seed), and time of application (at full bloom or at mid pod-fill). Protein content of faba bean forage material was variably affected by applied N; in one-half of the harvests conducted, at least one of the N application treatments resulted in significantly higher forage protein contents. No logical pattern or reason for the forage protein response was found. Seed protein content was unaffected by applied N up to 150 kg N/ha, but was significantly increased by 300 kg N/ha in two out of three trials. Maximum rate of dry matter accumulation and N uptake commenced at blooming and continued up to the mid pod-fill growth stage. In seven trials monitored, the proportion of faba bean shoot N derived by symbiotic N2 fixation was 54%, with values of five out of the seven trials ranging from 63 to 71%. This amounted to 54–111 kg N/ha. Applied N decreased faba bean symbiotic fixation at all trials but one where available soil N was very high and symbiotic N2 was not occurring.


1976 ◽  
Vol 12 (2) ◽  
pp. 189-193 ◽  
Author(s):  
A. Hamid ◽  
G. Sarwar

SUMMARYThe effect of split application of N on the uptake of N by wheat from N15 labelled ammonium nitrate and urea was studied in the field. Nitrogen fertilizers were applied at 120 kg N/ha in a single application (at seeding); two split applications (at seeding and tillering); and six split applications (at seeding, tillering, boot, heading, flowering and the milky stage). Nitrogen applied in two splits was most productive for grain yield for both the N sources, but six split applications significantly increased the protein content in grain compared with single or two split applications. The utilization of N from ammonium nitrate in grain was significantly higher than from urea when applied in six split applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niguss Solomon Hailegnaw ◽  
Filip Mercl ◽  
Martin Kulhánek ◽  
Jiřina Száková ◽  
Pavel Tlustoš

AbstractThis study aimed on the increasing nitrogen use efficiency (NUE) of maize via the use of high temperature produced biochar (700 °C). Maize was grown to maturity on two contrasting soils (acidic Cambisol and neutral Chernozem) in pots with a treatment of biochar co-applied with ammonium sulphate stabilised by a nitrification inhibitor (3,4-dimethylpyrazole-phosphate, DMPP) or un-stabilised. The combination of biochar with ammonium sulphate containing DMPP increased maize biomass yield up to 14%, N uptake up to 34% and NUE up to 13.7% compared to the sole application of ammonium sulphate containing DMPP. However, the combination of biochar with un-stabilised ammonium sulphate (without DMPP) had a soil-specific influence and increased maize biomass only by 3.8%, N uptake by 27% and NUE by 11% only in acidic Cambisol. Further, the biochar was able to increase the uptake of phosphorus (P) and potassium (K) in both stabilised and un-stabilised treatments of ammonium sulphate. Generally, this study demonstrated a superior effect from the combined application of biochar with ammonium sulphate containing DMPP, which improved NUE, uptake of P, K and increased maize biomass yield. Such a combination may lead to higher efficiency of fertilisation practices and reduce the amount of N fertiliser to be applied.


1992 ◽  
Vol 72 (1) ◽  
pp. 235-241 ◽  
Author(s):  
L. E. Gauer ◽  
C. A. Grant ◽  
L. D. Bailey ◽  
D. T. Gehl

The effects of nitrogen fertilization on protein content, N uptake and N use efficiency of grain for six spring wheat cultivars were evaluated over a N application range of 0–200 kg ha−1, under two moisture supply levels, on Black Chernozemic soils in Manitoba. Moisture supply influenced protein content, protein yield, and grain N use efficiency (NUE) of applied fertilizer. Increased moisture supply lowered protein content and increased protein yield and NUE. Increasing N level increased protein, N uptake and decreased NUE, but effects depended on moisture supply. Cultivar differences occurred, especially at the higher moisture level.Key words: Protein, Triticum aestivum L., nitrogen uptake, nitrogen use efficiency, moisture


Sign in / Sign up

Export Citation Format

Share Document